Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Multiscale Learnable Physical Modeling and Data Assimilation Framework: Application to High-Resolution Regionalized Hydrological Simulation of Flash Floods

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Risques, Ecosystèmes, Vulnérabilité, Environnement, Résilience (RECOVER); Aix Marseille Université (AMU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT); Institut de Mathématiques de Toulouse UMR5219 (IMT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS); Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT); ANR-21-CE04-0021,MUFFINS,Prévision multiéchelle des inondations avec des solutions innovantes(2021)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • نبذة مختصرة :
      To advance the discovery of scale-relevant hydrological laws while better exploiting massive multi-source data, merging machine learning into process-based modeling is compelling, as recently demonstrated in lumped hydrological modeling. This article introduces MLPM-PR, a new and powerful framework standing for Multiscale spatially distributed Learnable Physical Modeling and learnable Parameter Regionalization with data assimilation. MLPM-PR crucially builds on a differentiable model that couples (i) two neural networks for processes learning and parameters regionalization, (ii) grid-based conceptual hydrological operators, and (iii) a simple kinematic wave routing. The approach is tested on a challenging flash flood-prone multi-catchment modeling setup at high spatio-temporal resolution (1km, 1h). Discharge prediction performances highlight the accuracy and robustness of MLPM-PR compared to classical approaches in both spatial and temporal validation. The physical interpretability of spatially distributed parameters and internal states shows the nuanced behavior of the hybrid model and its adaptability to diverse hydrological responses.
    • Relation:
      hal-04498418; https://hal.inrae.fr/hal-04498418; https://hal.inrae.fr/hal-04498418/document; https://hal.inrae.fr/hal-04498418/file/main-paper.pdf
    • الرقم المعرف:
      10.22541/au.170709054.44271526/v2
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.A9BC1C78