Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Mucins trigger dispersal of Pseudomonas aeruginosa biofilms

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Microbiology Graduate Program; Massachusetts Institute of Technology. Research Laboratory of Electronics; Co, Julia Y.; Carcamo Oyarce, Gerardo Alejandro; Billings, Nicole; Wheeler, Kelsey Morgan; Grindy, Scott Charles; Holten-Andersen, Niels; Ribbeck, Katharina
    • بيانات النشر:
      Springer Nature
    • الموضوع:
      2019
    • Collection:
      DSpace@MIT (Massachusetts Institute of Technology)
    • نبذة مختصرة :
      Mucus is a biological gel that lines all wet epithelia in the body, including the mouth, lungs, and digestive tract, and has evolved to protect the body from pathogenic infection. However, microbial pathogenesis is often studied in mucus-free environments that lack the geometric constraints and microbial interactions in physiological three-dimensional mucus gels. We developed fluid-flow and static test systems based on purified mucin polymers, the major gel-forming constituents of the mucus barrier, to understand how the mucus barrier influences bacterial virulence, particularly the integrity of Pseudomonas aeruginosa biofilms, which can become resistant to immune clearance and antimicrobial agents. We found that mucins separate the cells in P. aeruginosa biofilms and disperse them into suspension. Other viscous polymer solutions did not match the biofilm disruption caused by mucins, suggesting that mucin-specific properties mediate the phenomenon. Cellular dispersion depended on functional flagella, indicating a role for swimming motility. Taken together, our observations support a model in which host mucins are key players in the regulation of microbial virulence. These mucins should be considered in studies of mucosal pathogenesis and during the development of novel strategies to treat biofilms.
    • File Description:
      application/pdf
    • ISSN:
      2055-5008
    • Relation:
      http://dx.doi.org/10.1038/s41522-018-0067-0; npj Biofilms and Microbiomes; http://hdl.handle.net/1721.1/120576; Co, Julia Y. et al. “Mucins Trigger Dispersal of Pseudomonas Aeruginosa Biofilms.” Npj Biofilms and Microbiomes 4, 1 (October 2018): 23 © 2018 The Author(s).; orcid:0000-0002-9214-2465; orcid:0000-0002-0947-7759; orcid:0000-0002-5318-9674; orcid:0000-0001-8260-338X
    • الدخول الالكتروني :
      http://hdl.handle.net/1721.1/120576
    • Rights:
      Creative Commons Attribution 4.0 International license ; https://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.A8C33FF6