Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Multiblock chemometrics for the discrimination of three extra virgin olive oil varieties

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE); Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement IRD : UMR237-Centre National de la Recherche Scientifique (CNRS); medOOmics
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2020
    • Collection:
      Aix-Marseille Université: HAL
    • نبذة مختصرة :
      International audience ; To discriminate samples from three varieties of Tunisian extra virgin olive oils, weighted and non-weighted multiblock partial least squares-discriminant analysis (MB-PLS1-DA) models were compared to PLS1-DA models using data obtained by gas chromatography (GC), or global composition through mid-infrared spectra (MIR). Models performances were determined using percentages of sensitivity, specificity and total correct classification. The choice of threshold level for the interpretation of PLS1-DA results was considered. PLS1-DA models using GC data gave better results than those using MIR data. Even with the most conservative threshold, PLS1-DA on GC data allowed very good predictions for Chemlali variety (99% correct classification), but had more difficulty to discriminate Chetoui and Oueslati samples (95% and 84% correct classification respectively). Non-weighted MB-PLS1-DA models benefiting from the synergy between the two sources of data were more discriminative than simple PLS1-DA, yielding better prediction for Chetoui and Oueslati varieties (98% and 90% correct classification respectively).
    • Relation:
      hal-02338766; https://hal.science/hal-02338766; https://hal.science/hal-02338766/document; https://hal.science/hal-02338766/file/output%2810%29.pdf
    • الرقم المعرف:
      10.1016/j.foodchem.2019.125588
    • الدخول الالكتروني :
      https://hal.science/hal-02338766
      https://hal.science/hal-02338766/document
      https://hal.science/hal-02338766/file/output%2810%29.pdf
      https://doi.org/10.1016/j.foodchem.2019.125588
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.A8AA35D6