Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Error estimates of local energy regularization for the logarithmic Schrodinger equation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Department of Mathematics Singapore; National University of Singapore (NUS); Institut de Recherche Mathématique de Rennes (IRMAR); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro); Yau Mathematical Sciences Center, Tsinghua University; School of Mathematics, State Key Laboratory of Hydraulics and Mountain River Engineering; Chengdu University of Technology (CDUT); ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011)
    • بيانات النشر:
      CCSD
      World Scientific Publishing
    • الموضوع:
      2022
    • Collection:
      Archive Ouverte de l'Université Rennes (HAL)
    • نبذة مختصرة :
      31 pages, 10 figures, final version. More explanations and some proofs are more detailed. ; International audience ; The logarithmic nonlinearity has been used in many partial differential equations (PDEs) for modeling problems in various applications.Due to the singularity of the logarithmic function, it introducestremendous difficulties in establishing mathematical theories, as well asin designing and analyzing numerical methods for PDEs with such nonlinearity. Here we take the logarithmic Schr\"odinger equation (LogSE)as a prototype model. Instead of regularizing $f(\rho)=\ln \rho$ in theLogSE directly and globally as being done in the literature, we propose a local energy regularization (LER) for the LogSE byfirst regularizing $F(\rho)=\rho\ln \rho -\rho$ locally near $\rho=0^+$ with a polynomial approximation in the energy functional of the LogSE and then obtaining an energy regularized logarithmic Schr\"odinger equation (ERLogSE) via energy variation. Linear convergence is established between the solutions of ERLogSE and LogSE in terms of a small regularization parameter $0<\ep\ll1$. Moreover, the conserved energy of the ERLogSE converges to that of LogSE quadratically, which significantly improvesthe linear convergence rate of the regularization method in the literature. Error estimates are alsopresented for solving the ERLogSE by using Lie-Trotter splittingintegrators. Numerical results are reported to confirm our errorestimates of the LER and of the time-splitting integrators for theERLogSE. Finally our results suggest that the LER performs better than regularizing the logarithmic nonlinearity in the LogSE directly.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2006.05114; ARXIV: 2006.05114
    • الرقم المعرف:
      10.1142/S0218202522500038
    • الدخول الالكتروني :
      https://hal.science/hal-02817115
      https://hal.science/hal-02817115v2/document
      https://hal.science/hal-02817115v2/file/LSE.pdf
      https://doi.org/10.1142/S0218202522500038
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.A8434F6B