Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      genicap; Radboud University Nijmegen; Institute for Wetland and Water Research; Department Biosciences Engineering; Antwerp; International Research Centre for Telecommunications and Radar; International Research Centre for Telecommunications and Radar Delft; Delft University of Technology (TU Delft)-Delft University of Technology (TU Delft); Laboratoire Electronique, Informatique et Image UMR6306 (Le2i); Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM); Arts et Métiers Sciences et Technologies; HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies; HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS); Campus Bio-Medico University, Rome, Italy; Università Campus Bio-Medico di Roma / University Campus Bio-Medico of Rome ( UCBM); I. Vekua Institute of Applied Mathematics; I. Javakhishvili Tbilisi State University
    • بيانات النشر:
      HAL CCSD
      Public Library of Science
    • الموضوع:
      2012
    • Collection:
      Université de Bourgogne (UB): HAL
    • نبذة مختصرة :
      International audience ; Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way.
    • Relation:
      hal-00736577; https://u-bourgogne.hal.science/hal-00736577; https://u-bourgogne.hal.science/hal-00736577/document; https://u-bourgogne.hal.science/hal-00736577/file/journal.pone.0029324.pdf
    • الرقم المعرف:
      10.1371/journal.pone.0029324
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.A75F5D18