Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Experimental and Numerical Study on Lightweight-Foamed-Concrete-Filled Widened Embankment of High-Speed Railway

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      MDPI AG
    • الموضوع:
      2024
    • Collection:
      Directory of Open Access Journals: DOAJ Articles
    • نبذة مختصرة :
      To study the performance of lightweight foamed concrete (LWFC) in widened embankments of high-speed railways, this study first conducted numerous strength, permeability, and water immersion tests to investigate the mechanical properties and water resistance of LWFC with designed dry densities of 550, 600, and 650 kg/m 3 . Secondly, a field test was performed to analyze the behavior of the deformation and the internal pressure within the LWFC-filled portions. Furthermore, a parametric study via numerical modeling was performed to investigate the effects of four key factors on the performance of the LWFC-filled, widened embankments. Results showed that LWFC possesses adequate bearing capacity and impermeability to meet high-speed railway embankment widening requirements. However, water seepage reduces LWFC strength. The additional pressure from LWFC filling increases initially but then decreases once dehydration occurs. The settlement induced by LWFC accounted for 71% of the total filling height, which is only 37.5% of the total settlement after construction. The parametric study results show that the maximum settlement of widened and existing portions induced by LWFC was 46.3–49.6% and 48.3–53.2% of those induced by traditional fillers due to the LWFC’s lower density as well as their better self-supporting ability. Making an appropriate reduction in the thickness of the retain wall installed against the LWFC-filled widened embankment of the high-speed railway generates a few variations in the lateral deformation of the wall. Furthermore, the effects of the pile offset on the deformation of the LWFC-filled embankment were more sensitive compared to the diameter of the piles.
    • Relation:
      https://www.mdpi.com/1996-1944/17/18/4642; https://doaj.org/toc/1996-1944; https://doaj.org/article/c507d87c08a6497d9c40dedfd0a2d444
    • الرقم المعرف:
      10.3390/ma17184642
    • الدخول الالكتروني :
      https://doi.org/10.3390/ma17184642
      https://doaj.org/article/c507d87c08a6497d9c40dedfd0a2d444
    • الرقم المعرف:
      edsbas.A6EE4147