Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

β-Ureidopropionase deficiency due to novel and rare UPB1 mutations affecting pre-mRNA splicing and protein structural integrity and catalytic activity

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2022
    • Collection:
      Maastricht University Research Publications
    • نبذة مختصرة :
      β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyses the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, ammonia and CO2. To date, only a limited number of genetically confirmed patients with a complete β-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 10 newly identified β-ureidopropionase deficient individuals. Patients presented mainly with neurological abnormalities and markedly elevated levels of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid in urine. Analysis of UPB1, encoding β-ureidopropionase, showed 5 novel missense variants and two novel splice-site variants. Functional expression of the UPB1 variants in mammalian cells showed that recombinant ß-ureidopropionase carrying the p.Ala120Ser, p.Thr129Met, p.Ser300Leu and p.Asn345Ile variant yielded no or significantly decreased β-ureidopropionase activity. Analysis of the crystal structure of human ß-ureidopropionase indicated that the point mutations affect substrate binding or prevent the proper subunit association to larger oligomers and thus a fully functional β-ureidopropionase. A minigene approach showed that the intronic variants c.[364 + 6 T > G] and c.[916 + 1_916 + 2dup] led to skipping of exon 3 and 8, respectively, in the process of UPB1 pre-mRNA splicing. The c.[899C > T] (p.Ser300Leu) variant was identified in two unrelated Swedish β-ureidopropionase patients, indicating that β-ureidopropionase deficiency may be more common than anticipated.
    • الرقم المعرف:
      10.1016/j.ymgme.2022.01.102
    • الدخول الالكتروني :
      https://cris.maastrichtuniversity.nl/en/publications/7792a852-54e9-44e1-97d9-21d5f805ef85
      https://doi.org/10.1016/j.ymgme.2022.01.102
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.A6D5CE19