Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

SVM-based Real-Time Classification of Prosthetic Fingers using Myo Armband-acquired Electromyography Data

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Akmal, Muhammad; Qureshi, Muhammad Farrukh; Amin, Faisal; Ur Rehman, Muhammad Zia; Niazi, Imran Khan
  • المصدر:
    Akmal , M , Qureshi , M F , Amin , F , Ur Rehman , M Z & Niazi , I K 2021 , SVM-based Real-Time Classification of Prosthetic Fingers using Myo Armband-acquired Electromyography Data . in BIBE 2021 - 21st IEEE International Conference on BioInformatics and BioEngineering, Proceedings . , 9635461 , IEEE (Institute of Electrical and Electronics Engineers) , International Conference on Bioinformatics and Bioengineering , 21st IEEE International Conference on BioInformatics and BioEngineering, BIBE 2021 , Kragujevac , Serbia , 25/10/2021 . https://doi.org/10.1109/BIBE52308.2021.9635461
  • الموضوع:
  • نوع التسجيلة:
    article in journal/newspaper
  • اللغة:
    English
  • معلومة اضافية
    • بيانات النشر:
      IEEE (Institute of Electrical and Electronics Engineers)
    • الموضوع:
      2021
    • Collection:
      Aalborg University (AAU): Publications / Aalborg Universitet: Publikationer
    • نبذة مختصرة :
      In this work we applied real-time classification of prosthetic fingers movements using surface electromyography (sEMG) data. We employed support vector machine (SVM) for classification of fingers movements. SVM has some benefits over other classification techniques e.g. 1) it avoids overfitting, 2) handles nonlinear data efficiently and 3) it is stable. SVM is employed on Raspberry pi which is a low-cost, credit-card sized computer with high processing power. Moreover, it supports Python which makes it easy to build projects and it has multiple interfaces available. In this paper, our aim is to perform classification of prosthetic hand relative to human fingers. To assess the performance of our framework we tested it on ten healthy subjects. Our framework was able to achieve mean classification accuracy of 78%.
    • File Description:
      application/pdf
    • الرقم المعرف:
      10.1109/BIBE52308.2021.9635461
    • الدخول الالكتروني :
      https://vbn.aau.dk/da/publications/0acb275c-36ba-46fc-949c-56740e3ae15e
      https://doi.org/10.1109/BIBE52308.2021.9635461
      https://vbn.aau.dk/ws/files/464491657/paper_35.pdf
      http://www.scopus.com/inward/record.url?scp=85123734575&partnerID=8YFLogxK
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.A6B3D791