نبذة مختصرة : Microbial growth is among the challenges impairing food preservation and shelf-life. Essential oils (EO) featuring antimicrobial and antioxidant activities denote an alternative for lessening the contents of synthetic additives that may be harmful to human health. The limitations due the low EO solubility in water and their poor stability in aqueous media have been suppressed by the use of nanoemulsions (NE), which feature kinetic stability, intensify the antimicrobial effect of EO, and allow their dispersions in aqueous systems such as those involving polysaccharides for applications as packaging materials. The objective of this study were i) the production of NE having rosemary or clove EO as dispersed phase through high-energy (microfluidization - MF) or low-energy (catastrophic phase inversion - CPI) emulsification methods; ii) the evaluation of the NE stability with regard to the surfactant content in relation to the dispersed phase; and iii) the NE incorporation into pectin films to investigate the interaction among the components and the effect of the surfactant content on the physicochemical and active properties of the nanocomposites. The NE were characterized as to their average droplet sizes, zeta potentials, colloidal stability, and morphology. The films were evaluated as to their film-forming viscosity, morphology, wettability by water as well as mechanical, antimicrobial, and antioxidant properties. Regardless of the EO, the CPI-produced NE presented average droplet sizes and zeta potentials ranging from 100 to 500 nm and from -10 to -1 mV, respectively, being surfactant concentration and location the major factors affecting polydispersity. The MF was more efficient than CPI because the former led to average diameters ranging from 10 to 100 nm, and surfactant content was the dominant factor. The rosemary NE obtained through MF were more stable against creaming than clove NE against sedimentation. Cryo-TEM images indicate quasi-spherical particles with polydisperse diameters for CPI and homogeneous ...
No Comments.