نبذة مختصرة : Firefighting protective clothing is an essential equipment that can protect firefighters from burn injuries during the firefighting process. However, it is still a challenge to detect the damage of firefighting protective clothing at an early stage when firefighters are exposed to excessively high temperature in fire cases. Herein, an ultralight self-powered fire alarm electronic textile (SFA e-textile) based on conductive aerogel fiber that comprises calcium alginate (CA), Fe 3 O 4 nanoparticles (Fe 3 O 4 NPs), and silver nanowires (Ag NWs) was developed, which achieved ultrasensitive temperature monitoring and energy harvesting in firefighting clothing. The resulting SFA e-textile was integrated into firefighting protective clothing to realize wide-range temperature sensing at 100–400 °C and repeatable fire warning capability, which could timely transmit an alarm signal to the wearer before the firefighting protective clothing malfunctioned in extreme fire environments. In addition, a self-powered fire self-rescue location system was further established based on the SFA e-textile that can help rescuers search and rescue trapped firefighters in fire cases. The power in the self-powered fire location system was offered by an SFA e-textile-based triboelectric nanogenerator (TENG). This work provided a useful design strategy for the preparation of ultralight wearable temperature-monitoring SFA e-textile used in firefighting protective clothing.
No Comments.