Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The quotient algebra of compact-by-approximable operators on Banach spaces failing the approximation property

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Department of Mathematics and Statistics
    • بيانات النشر:
      Cambridge University Press
    • الموضوع:
      2021
    • Collection:
      Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto
    • نبذة مختصرة :
      We initiate a study of structural properties of the quotient algebra K (X)/A(X) of the compact-by-approximable operators on Banach spaces X failing the approximation property. Our main results and examples include the following: (i) there is a linear isomorphic embedding from c(0) into K (Z)/A(Z), where Z belongs to the class of Banach spaces constructed by Willis that have the metric compact approximation property but fail the approximation property, (ii) there is a linear isomorphic embedding from a nonseparable space c(0)(Gamma) into K (Z(FJ))/A(Z(FJ)), where Z(FJ) is a universal compact factorisation space arising from the work of Johnson and Figiel. ; Peer reviewed
    • File Description:
      application/pdf
    • Relation:
      H. Wirzenius gratefully acknowledges the financial support of The Swedish Cultural Foundation in Finland and the Magnus Ehrnrooth Foundation. ©c 2019 Australian Mathematical Publishing Association Inc.; Tylli , H-O & Wirzenius , H J 2021 , ' The quotient algebra of compact-by-approximable operators on Banach spaces failing the approximation property ' , Journal of the Australian Mathematical Society , vol. 110 , no. 2 , pp. 266-288 . https://doi.org/10.1017/S1446788719000211; ORCID: /0000-0003-4185-6019/work/93243816; http://hdl.handle.net/10138/330651; f0b7ca97-f35e-46c8-a279-e88232370201; 000628879900007
    • الدخول الالكتروني :
      http://hdl.handle.net/10138/330651
    • Rights:
      info:eu-repo/semantics/openAccess ; openAccess
    • الرقم المعرف:
      edsbas.A5211DB2