Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Multi-attribute balanced sampling for disentangled GAN controls

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      CEDRIC. Données complexes, apprentissage et représentations (CEDRIC - VERTIGO); Centre d'études et de recherche en informatique et communications (CEDRIC); Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers CNAM (CNAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers CNAM (CNAM); Conservatoire National des Arts et Métiers CNAM (CNAM); Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)); Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); ANR-20-THIA-0002,AHEAD,Intelligence artificielle pour la santé, la physqiue, les transports et la sécurité(2020); European Project: H2020-951911,H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT),AI4Media(2020)
    • بيانات النشر:
      CCSD
      Elsevier
    • الموضوع:
      2022
    • Collection:
      HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives)
    • نبذة مختصرة :
      International audience ; Various controls over the generated data can be extracted from the latent space of a pre-trained GAN, as it implicitly encodes the semantics of the training data. The discovered controls allow to vary semantic attributes in the generated images but usually lead to entangled edits that affect multiple attributes at the same time. Supervised approaches typically sample and annotate a collection of latent codes, then train classifiers in the latent space to identify the controls. Since the data generated by GANs reflects the biases of the original dataset, so do the resulting semantic controls. We propose to address disentanglement by subsampling the generated data to remove over-represented co-occuring attributes thus balancing the semantics of the dataset before training the classifiers. We demonstrate the effectiveness of this approach by extracting disentangled linear directions for face manipulation on two popular GAN architectures, PGGAN and StyleGAN, and two datasets, CelebAHQ and FFHQ. We show that this approach outperforms state-of-the-art classifier-based methods while avoiding the need for disentanglement-enforcing post-processing.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2111.00909; info:eu-repo/grantAgreement//H2020-951911/EU/AI technology for an ethical and trustworthy European media landscape/AI4Media; ARXIV: 2111.00909
    • الرقم المعرف:
      10.1016/j.patrec.2022.08.012
    • الدخول الالكتروني :
      https://hal.science/hal-03404279
      https://hal.science/hal-03404279v3/document
      https://hal.science/hal-03404279v3/file/main.pdf
      https://doi.org/10.1016/j.patrec.2022.08.012
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.A3E14499