Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Tight-Binding Model for Illustrating Exciton Confinement in Semiconductor Nanocrystals

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Department of Inorganic and Physical Chemistry, Ghent University; Universiteit Gent = Ghent University (UGENT); Physique - IEMN (PHYSIQUE - IEMN); Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN); Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA); Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA); Université catholique de Lille (UCL)-Université catholique de Lille (UCL); Z.H. acknowledges the FWO-Vlaanderen (projectsG0B2921N and G0C5723N) and Ghent University(01G02124)) for research funding.
    • بيانات النشر:
      HAL CCSD
      American Institute of Physics
    • الموضوع:
      2024
    • Collection:
      LillOA (HAL Lille Open Archive, Université de Lille)
    • نبذة مختصرة :
      International audience ; The Brus equation describes the relation between the lowest energy of an electron–hole pair and the size of a semiconductor crystallite. However, taking the strong confinement regime as a starting point, the equation does not cover the transition from weak to strong confinement, the accompanying phenomenon of charge-carrier delocalization, or the change in the transition dipole moment of the electron–hole pair state. Here, we use a one-dimensional, two-particle Hubbard model for interacting electron–hole pairs that extends the well-known tight-binding approach through a point-like electron–hole interaction. On infinite chains, the resulting exciton states exhibit the known relation between the Bohr radius, the exciton binding energy, and the effective mass of the charge carriers. Moreover, by introducing infinite-well boundary conditions, the model enables the transition of the exciton states from weak to strong confinement to be tracked, while straightforward adaptations provide insights into the relation between defects, exciton localization, and confinement. In addition, by introducing the dipole operator, the variation of the transition dipole moment can be mapped when shifting from electron–hole pairs in strong confinement to delocalized and localized excitons in weak confinement. The proposed model system can be readily implemented and extended to different multi-carrier states, thus providing researchers a tool for exploring, understanding, and teaching confinement effects in semiconductor nanocrystals under different conditions.
    • Relation:
      hal-04513566; https://hal.science/hal-04513566; https://hal.science/hal-04513566/document; https://hal.science/hal-04513566/file/TB_model_exciton_Hens_JCP_24.pdf
    • الرقم المعرف:
      10.1063/5.0192031
    • الدخول الالكتروني :
      https://hal.science/hal-04513566
      https://hal.science/hal-04513566/document
      https://hal.science/hal-04513566/file/TB_model_exciton_Hens_JCP_24.pdf
      https://doi.org/10.1063/5.0192031
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.A3D769D4