Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Multiobjective characteristic-based framework for very-large multiple sequence alignment

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      NOVA Information Management School (NOVA IMS); Information Management Research Center (MagIC) - NOVA Information Management School
    • الموضوع:
      2018
    • Collection:
      Repositório da Universidade Nova de Lisboa (UNL)
    • نبذة مختصرة :
      Rubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Multiobjective characteristic-based framework for very-large multiple sequence alignment. Applied Soft Computing Journal, 69, 719-736. [Advanced online publication on 27 June 2017]DOI:10.1016/j.asoc.2017.06.022 ; In the literature, we can find several heuristics for solving the multiple sequence alignment problem. The vast majority of them makes use of flags in order to modify certain alignment parameters; however, if no flags are used, the aligner will run with the default parameter configuration, which, often, is not the optimal one. In this work, we propose a framework that, depending on the biological characteristics of the input dataset, runs the aligner with the best parameter configuration found for another dataset that has similar biological characteristics, improving the accuracy and conservation of the obtained alignment. To train the framework, we use three well-known multiobjective evolutionary algorithms: NSGA-II, IBEA, and MOEA/D. Then, we perform a comparative study between several aligners proposed in the literature and the characteristic-based version of Kalign, MAFFT, and MUSCLE, when solving widely-used benchmarks (PREFAB v4.0 and SABmark v1.65) and very-large benchmarks with thousands of unaligned sequences (HomFam). ; authorsversion ; published
    • ISSN:
      1568-4946
    • Relation:
      PURE: 3236565; PURE UUID: 4a7f0bff-0944-49c4-8ffb-9ebb025fb14b; Scopus: 85023618707; WOS: 000438775200046; ORCID: /0000-0002-8793-1451/work/131992544; ORCID: /0000-0003-4732-3328/work/151426686; http://hdl.handle.net/10362/151413; https://doi.org/10.1016/j.asoc.2017.06.022
    • الرقم المعرف:
      10.1016/j.asoc.2017.06.022
    • الدخول الالكتروني :
      http://hdl.handle.net/10362/151413
      https://doi.org/10.1016/j.asoc.2017.06.022
    • Rights:
      openAccess
    • الرقم المعرف:
      edsbas.A3957202