Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

On the continuity of Fourier multipliers on $\dot{W}^{l,1}\left( \mathbb{R}^{d}\right)$ and $\dot{W}^{l,\infty }\left( \mathbb{R}^{d}\right) $

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); Faculty of Computer Science Iaşi, Roumania; Alexandru Ioan Cuza University of Iași = Universitatea Alexandru Ioan Cuza din Iași (UAIC); Équations aux dérivées partielles, analyse (EDPA); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2022
    • Collection:
      Université de Lyon: HAL
    • نبذة مختصرة :
      International audience ; Kazaniecki and Wojciechowskiproved in 2013 that every Fourier multiplier on $\dot{W}^{1,1}\left( \mathbb{R}^{d}\right) $ is a bounded continuous function on $\mathbb{R}^{d}$. This is a generalization of a previous result of Bonami and Poornima (1987)concerning homogeneous multipliers of degree zero. We further generalize the resultof Kazaniecki and Wojciechowski. We prove that, given an integer $l\geq1$,every multiplier on $\dot{W}^{l,1}\left( \mathbb{R}^{d}\right) $ or on $\dot{W}^{l,\infty}\left( \mathbb{R}^{d}\right) $ is a bounded continuous functionon $\mathbb{R}^{d}$. We obtain these results via a substantial simplification of the Riesz products technique used by Kazaniecki and Wojciechowski.
    • Relation:
      hal-03200268; https://hal.science/hal-03200268; https://hal.science/hal-03200268/document; https://hal.science/hal-03200268/file/curca_mult_2021.pdf
    • الرقم المعرف:
      10.1016/j.jfa.2022.109573
    • الدخول الالكتروني :
      https://hal.science/hal-03200268
      https://hal.science/hal-03200268/document
      https://hal.science/hal-03200268/file/curca_mult_2021.pdf
      https://doi.org/10.1016/j.jfa.2022.109573
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.A24A618