Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Remote Detection of Asbestos-Cement Roofs: Evaluating a QGIS Plugin in a low- and middle-income country

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Pôle de recherche pour l'organisation et la diffusion de l'information géographique (PRODIG (UMR_8586 / UMR_D_215 / UM_115)); Université Paris 1 Panthéon-Sorbonne (UP1)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); ANR-19-CE03-0001,ERASEd,Evaluer le Risque Amiante à SibatE(2019)
    • بيانات النشر:
      CCSD
      Elsevier
    • الموضوع:
      2024
    • Collection:
      Université Paris 1 Panthéon-Sorbonne: HAL
    • نبذة مختصرة :
      International audience ; Machine learning, a subset of artificial intelligence, has emerged as a powerful tool for generating new knowledge from observations. In the realm of geographic information systems (GIS), machine learning techniques have become essential for spatial analysis tasks. Satellite image classification methods offer valuable decision-making support, particularly in land-use planning and identifying asbestos cement roofs, which pose significant health risks. In Colombia, where asbestos has been used for decades, the detection and management of installed asbestos is critical. This study evaluates the effectiveness of the RoofClassify plugin, a machine learning-based GIS tool, in detecting asbestos cement roofs in Sibat & eacute;, Colombia. By employing high-resolution satellite imagery, the study assesses the plugin's accuracy and performance. Results indicate that RoofClassify demonstrates promising capabilities in detecting asbestos cement roofs, achieving an overall accuracy score of 69.73%. This shows potential for identifying areas with the presence of asbestos and informing decision-makers. However, false positives remain a challenge, necessitating further on-site verification. The study underscores the importance of cautious interpretation of classification results and the need for tailored approaches to address specific contextual factors. Overall, RoofClassify presents a valuable tool for identifying asbestos cement roofs, aiding in asbestos management strategies.
    • Relation:
      IRD: fdi:010091365
    • الرقم المعرف:
      10.1016/j.rsase.2024.101351
    • الدخول الالكتروني :
      https://shs.hal.science/halshs-04695217
      https://shs.hal.science/halshs-04695217v1/document
      https://shs.hal.science/halshs-04695217v1/file/1-s2.0-S2352938524002155-main.pdf
      https://doi.org/10.1016/j.rsase.2024.101351
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.9ECE7AD6