Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Theoretical Investigation of the Lattice Thermal Conductivities of II-IV-V2 Pnictide Semiconductors

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Universidad de Sevilla. Departamento de Química Física; Ministerio de Ciencia e Innovación (MICIN). España; Unión Europea (UE); UK's Materials and Molecular Modelling Hub
    • بيانات النشر:
      AMER Chemical Society
    • الموضوع:
      2024
    • Collection:
      idUS - Deposito de Investigación Universidad de Sevilla
    • نبذة مختصرة :
      Ternary pnictide semiconductors with II−IV−V2 stoichiometry hold potential as cost-effective thermoelectric materials with suitable electronic transport properties, but their lattice thermal conductivities (κ) are typically too high. Insights into their vibrational properties are therefore crucial to finding strategies to reduce κ and achieve improved thermoelectric performance. We present a theoretical exploration of the lattice thermal conductivities for a set of pnictide semiconductors with ABX2 composition (A = Zn, Cd; B = Si, Ge, Sn; and X = P, As) using machine-learning-based regression algorithms to extract force constants from a reduced number of density functional theory simulations and then solving the Boltzmann transport equation for phonons. Our results align well with available experimental data, decreasing the mean absolute error by ∼3 W m−1 K−1 with respect to the best previous set of theoretical predictions. Zn-based ternary pnictides have, on average, more than double the thermal conductivity of the Cd-based compounds. Anisotropic behavior increases with the mass difference between A and B cations, but while the nature of the anion does not affect the structural anisotropy, the thermal conductivity anisotropy is typically higher for arsenides than for phosphides. We identify compounds such as CdGeAs2, for which nanostructuring to an affordable range of particle sizes could lead to κ values low enough for thermoelectric applications. ; Ministerio de Ciencia e Innovación de España MICIN/AEI/10.13039/501100011033 ; European Union Next Generation EU/PRTR" PID2019-106871GB-I00, TED2021-130874B-I00, PID2022-138063OB-I00, QS-2022-2-0030, QHS-2022-3-0032 ; UK's Materials and Molecular Modelling Hub - EPSRC EP/T022213/1 EP/W032260/1
    • Relation:
      ACS Applied Electronic Materials.; MICIN/AEI/10.13039/501100011033; PID2019-106871GB-I00; TED2021-130874B-I00; PID2022-138063OB-I00; QS-2022-2-0030; QHS-2022-3-0032; EP/T022213/1; EP/W032260/1; https://doi.org/10.1021/acsaelm.3c01242; https://idus.us.es/handle//11441/159052
    • الدخول الالكتروني :
      https://idus.us.es/handle//11441/159052
    • Rights:
      Atribución 4.0 Internacional ; http://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.9DD2B0FD