Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

FLAVONOID BIOSYNTHESIS GENES IN WHEAT ; ГЕНЫ БИОСИНТЕЗА ФЛАВОНОИДОВ ПШЕНИЦЫ

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      РФФИ, Президиум РАН, грант Президента Российской Федерации для молодых докторов наук (МД_2615.2013.4) и государственная бюджетная программа VI.53.1.5
    • بيانات النشر:
      Institute of Cytology and Genetics of Siberian Branch of the RAS
    • الموضوع:
      2015
    • Collection:
      Vavilov Journal of Genetics and Breeding / Вавиловский журнал генетики и селекции
    • نبذة مختصرة :
      The biosynthesis of flavonoid compounds is one of the best-studied metabolic pathways in plants. The researchers’ attention to the biochemical, physiological and genetic aspects of flavonoid biosynthesis is associated primarily with the wide range of their biological properties. In addition, the flavonoid biosynthesis gene system is an excellent genetic model. Owing to the development of molecular and genomic methods in recent years, considerable progress is made in the understanding of the molecular and genetic mechanisms underpinning flavonoid biosynthesis in bread wheat (Triticum aestivum L.). This article provides a brief overview of the results of research in the structural and functional organization of flavonoid biosynthesis genes in wheat and its relatives. ; Биосинтез флавоноидных соединений – один из наиболее хорошо изученных метаболических путей растений. Внимание исследователей к биохимическим, физиологическим и генетическим аспектам биосинтеза флавоноидов связано в первую очередь с широким спектром их биологических свойств. Кроме того, система генов биосинтеза флавоноидов является отличной генетической моделью. Благодаря развитию методов молекулярной генетики и геномики в течение последних лет удалось существенно продвинуться в понимании молекулярно-генетических механизмов, контролирующих биосинтез флавоноидов у мягкой пшеницы (Triticum aestivum L.). В настоящей статье проводится краткий обзор результатов работ, посвященных анализу структурной и функциональной организации генов биосинтеза флавоноидов пшеницы и ее сородичей.
    • File Description:
      application/pdf
    • Relation:
      https://vavilov.elpub.ru/jour/article/view/306/308; Бриттон Г. Биохимия природных пигментов: Пер. с англ. М.: Мир, 1986. 422 с.; Запрометов М.Н. Основы биохимии фенольных соединений. М.: Высш. шк., 1974. 214 с.; Мартынов С.П., Добротворская Т.В. Особенности распространения морфологических признаков колоса мягкой пшеницы на территории бывшего СССР // Генетика. 1997. T. 33. C. 350–357.; Новотельнов Н.В., Ежов И.С. Об антибиотических и антиокислительных свойствах желтых пигментов зерна // Докл. АН СССР. 1954. T. 99. C. 297–300.; Синская Е. О полевых культурах Алтая (краткий отчет о поездке летом 1924 г.) // Тр. прикл. ботан. селекции. 1925. T. 14. C. 359–376.; Хлесткина Е.К. Гены, детерминирующие окраску различных органов пшеницы // Вавилов. журн. генет. и селекции. 2012. Т. 16. С. 202–216.; Шоева О.Ю., Хлесткина Е.К. Экспрессия гена F3h в различных органах пшеницы // Молекуляр. биология. 2013. Т. 47. C. 1028–1030.; Якубцинер М.М., Савицкий М.С. Зерновые культуры // Руководство по апробации с.-х. культур. М.: Сельхозгиз, 1947. С. 20.; Bernhardt C., Lee M.M., Gonzalez A., Zhang F., Lloyd A., Schiefelbein J. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root // Development. 2003. V. 130. P. 6431–6439.; Bi H.H., Sun Y.W., Xiao Y.G., Xia L.Q. Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm // Euphytica. 2014. V. 195. Р. 197–207.; Borevitz J.O., Xia Y., Blount J., Dixon R.A., Lamb C. Activation tagging identifi ed a conserved MYB regulator of phenylpropanoid biosynthesis // Plant Cell. 2000. V. 12. P. 2383–2393.; Brink R.A. A genetic change associated with the R locus in maize which is directed and potentially reversible // Genetics. 1956. V. 41. P. 872–889.; Brink R.A. Paramutation // Annu. Rev. Genet. 1973. V. 7. P. 129–152.; Burr F.A., Burr B., Scheffl er B.E., Blewitt M., Wienand U., Matz E.C. The maize repressor-like gene intensifi er 1 shares homology with the r1/b7 multigene family of transcription factors and exhibits missplicing // Plant Cell. 1996. V. 8. P. 1249–1259.; Сampbell P.N., Smith A.D., Peters T.J. Biochemistry illustrated: Biochemistry and Molecular Biology in the; Post-Genomic Era. Edinburgh; N.Y.: Elsevier Churchill Livingstone, 2005. 264 p.; Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J.; Voytas D.F. Effi cient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting // Nucl. Acids Res. 2011. 39. P. e82.; Chalker-Scott L. Environmental signifi cance of anthocyanins in plant stress responses // Photochem. Photobiol. 1999. V. 70. P. 1–9.; Chandler V.L., Radicella J.P., Robbins T.P., Chen J., Turks D. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences // Plant Cell. 1989. V. 1. P. 1175–1183.; Сhopra S., Hoshino A., Boddu J., Iida S. Flavonoid pigments as tools in molecular genetics // The Science of Flavonoids / Ed. E. Grotewold. N.Y.: Springer, 2008. P. 147–173.; Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. Targeting DNA double-strand breaks with TAL effector nucleases // Genetics. 2010. V. 186. Р. 757–761.; Cong L., Ran A.F., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffi ni L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems // Science. 2013. V. 339. P. 819–823.; Consonni G., Geuna F., Gavazzi G., Tonelli C. Molecular homology among members of the R gene family in maize // Plant J. 1993. V. 3. P. 335–346.; Darwin C. The variation of animals and plants under domestication. N.Y.: D.Appelton & Co, 1883. 495 p.; Debeaujon I., Léon-Kloosterziel K.M., Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis // Plant Physiol. 2000. V. 122. P. 403–414.; Dooner H.K., Kermicle J.L. Displaced and tandem duplications in the long arm of chromosome 10 in mayze // Genetics. 1976. V. 82. P. 309–322.; Dooner H.K., Robbins T.P., Jorgensen R.A. Genetic and developmental control of anthocyanin biosynthesis // Annu. Rev. Genet. 1991. V. 25. P. 173–179.; Dubos C., Le Gourrierec J., Baudry A., Lanet E., Debeaujon I., Routaboul J.-M., Alboresi A., Weisshaar B.; Lepiniec L. MYBL2 is a new regulator of fl avonoid biosynthesis in Arabidopsis thaliana // Plant J. 2008. V. 55. P. 940–953.; Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L. MYB transcription factors in Arabidopsis // Trends Plant Sci. 2010. V. 15. P. 573–581.; Farrant J.M. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species // Plant Ecol. 2000. V. 151. P. 29–39.; Ferré-D′Amaré A.R., Pognonec P., Rüder R.G., Burley S.K. Structure and function of the b/HLH/Z domain of USF // EMBO J. 1994. V. 13. P. 180–189.; Flavonoid Pharmacokinetics / Eds N.M. Davies, J.A. Yanez. Hoboken; New Jersey: John Wiley & Sons, Inc., 2013. P. 7.; Freed R.D., Everson E.H., Ringlund K., Gullord M. Seed coat color in wheat and the relationship to seed dormancy at maturity // Cereal Res. Commun. 1976. V. 4. P. 147–149.; Goff S.A., Cone K.C., Chandler V.L. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins // Genes Dev. 1992. V. 6. P. 864–875.; Gonzalez A., Zhao M., Leavitt J.M., Llyod A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/ Myb transcriptional complex in Arabidopsis seedlings // Plant J. 2008. V. 53. P. 814–827.; Gordeeva E.I., Shoeva O.Y., E.K. Khlestkina E.K. Cold stress response of wheat genotypes having different Rc alleles // Cereal Res. Commun. 2013. V. 41. P. 519–526.; Gordeeva E.I., Shoeva O.Y., Khlestkina E.K. Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of Pp (purple pericarp) alleles // Euphytica. 2014. DOI:10.1007/s10681-014-1317-8.; Hale С.J., Stonaker J.L., Gross S.M., Hollick J.B. A novel Snf2 protein maintains trans-generational regulatory states established by paramutation in maize // PLoS Biol. 2007. V. 5. P. e275.; Heim M.A., Jakoby M., Werber M., Martin C., Weisshaar B., Bailey P.C. The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity // Mol. Biol. Evol. 2003. V. 20. P. 735–747.; Himi E., Maekawa M., Miura H., Noda K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat // Theor. Appl. Genet. 2011. 11 p. ID 369460.; Himi E., Nisar A., Noda K. Colour genes (R and Rc) for grain and coleoptile upregulate fl avonoid biosynthesis genes in wheat // Genome. 2005. V. 48. P. 747–754.; Himi E., Noda K. Isolation and location of three homoeologous dihydrofl avonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression // J. Exp. Bot. 2004. V. 55. P. 365–375.; Himi E., Noda K. Red grain colour gene (R) of wheat is a Myb-type transcription factor // Euphytica. 2005. V. 143. P. 239–242.; Himi E., Osaka T., Noda K. 2006. Isolation and characterization of wheat ANS genes. GenBank 2006, [http://www. ncbi.nlm.nih.gov/sites/entrez?term=himi%20osaka%20noda&cmd=Search&db=nuccore&QueryKey=4]; Hollick J. B., Dorweiler J.E., Chandler V.L. Paramutation and related allelic interactions // Trends Genet. 1997. V. 13. P. 302–308.; Hollick J.B., Patterson G.I., Coe E.H., Cone K.C., Chandler V.L. Allelic interactions heritably infl uence the activity of a metastable maize pl allele // Genetics. 1995. V. 141. P. 709–719.; Jaakola L., Määttä K., Pirtillä A.M., Törrönen R., Kärenlampi S., Hohtola A. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and fl avonol levels during bilberry fruit development // Plant Physiol. 2002. V. 130. P. 729–739.; Jende-Strid B. Genetic control of fl avonoid biosynthesis in barley // Hereditas. 1993. V. 119. P. 187–204.; Khlestkina E.K. The adaptive role of fl avonoids: emphasis on cereals // Cereal Res. Commun. 2013. V. 41. P. 185–198.; Khlestkina E.K. Current applications of wheat and wheatalien precise genetic stocks // Mol. Breed. 2014. V. 34. Р. 273–281.; Khlestkina E.K., Dobrovolskaya O.B., Leonova I.N., Salina E.A. Diversifi cation of the duplicated F3h genes in Triticeae // J. Mol. Evol. 2013. V. 76. P. 261–266.; Khlestkina E.K., Gordeeva E.I., Arbuzova V.S. Molecular and functional characterization of wheat near-isogenic line ‘i:S29Ra’ having intensive anthocyanin pigmentation of the coleoptile, culm, leaves and auricles // Plant Breed. 2014. V. 133. P. 454–458.; Khlestkina E.K., Pshenichnikova T.A., Röder M.S., Börner A. Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes // Cereal Res. Commun. 2009b. V. 37. P. 391–398.; Khlestkina E.K., Röder M.S., Börner A. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.) // Euphytica. 2010а. V. 171. P. 65–69.; Khlestkina E.K., Röder M.S., Pshenichnikova T.A., Börner A. Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.) // Mol. Breed. 2010b. V. 25. P. 125–132.; Khlestkina E.K., Röder M.S., Salina E.A. Relationship between homoeologous regulatory and structural genes in allopolyploid genome – a case study in bread wheat // BMC Plant Biol. 2008. V. 8. P. 88.; Khlestkina E.K., Salina E.A., Matthies I., Leonova I.N., Börner A., Röder M.S. Comparative molecular marker-based genetic mapping of fl avanone 3-hydroxylase genes in wheat, rye and barley // Euphytica. 2011. V. 179. P. 333–341.; Khlestkina E.K., Shoeva O.Y. Intron loss in the chalcone-flavanone isomerase gene of rye // Mol. Breed. 2014. V. 33. Р. 953–959.; Khlestkina E.K., Tereshchenko O.Yu., Salina E.A. Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids // Mol. Genet. Genom. 2009a. V. 282. P. 475–485.; Knievel D.C., Abdel-Aal E.M., Rabalski I., Nakamura T., Hucl P. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.) // J. Cereal Sci. 2009. V. 50 P. 113–120.; Koornneef M. Mutations affecting the testa colour in Arabidopsis // Arabidopsis Inf. Serv. 1990. V. 27. P. 1–4.; Krol van der A.R., Mur L.A., de Lange P., Mol J.N., Stuitje A.R. Inhibition of fl ower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect // Plant Mol. Biol. 1990. V. 14. P. 457–466.; Kubo H., Peeters A.J.M., Aarts M.G.M., Pereira A., Koornneef M. ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis // Plant Cell. 1999. V. 11. P. 1217–1226.; Lachman J., Dudjak J., Miholová D., Kolihová D., Pivec V. Effect of cadmium on fl avonoid content in young barley (Hordeum sativum L.) plants // Plant Soil Environ. 2005. V. 51. P. 513–516.; Li W.L., Faris J.D., Chittoor J.M., Leach J.E., Hulbert S.H., Liu D.J., Chen P.D., Gill B.S. Genomic mapping of defense response genes in wheat // Theor. Appl. Genet. 1999. V. 98. P. 226–233.; Li H.P., Liao Y.C. Isolation and characterization of two closely linked phenylalanine ammonia-lyase genes from wheat // Yi. Chuan. Xue. Bao. 2003. V. 30. P. 907–912.; Liao Y.C., Li H.P., Kreuzaler F., Fischer R. Nucleotide sequence of one of two tandem genes encoding phenylalanine ammonia-lyase in Triticum aestivum // Plant Physiol. 1996. V. 112. No. 3. P. 1398–1398.; Lloyd A.M., Walbot V., Davis R.W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1 // Science. 1992. V. 258. P. 1773–1775.; Mali P., Esvelt K.M., Churcj G.M. Cas9 as a versatile tool for engineering biology // Nature Methods. 2013. V. 10. P. 957–963.; Matsui K., Umemura Y., Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis // Plant J. 2008. V. 55. P. 954–967.; McClintock B. Controlling elements and the gene // Cold Spring Harbor Symp. Quant. Biol. 1956. V. 21. P. 197–216.; Mol J., Grotewold E., Koes R. How genes paint fl owers and seeds // Trends Plant Sci. 1998. V. 3. P. 212–217.; Munkvold J.D., Greene R.A., Bermudez-Kandianis C.E., La Rota C.M., Edwards H., Sorrells S.F., Dake T., Benscher D., Kantety R., Linkiewicz A.M., Dubcovsky J., Akhunov E.D., Dvorak J., Miftahudin, Gustafson J.P., Pathan M.S., Nguyen H.T., Matthews D.E., Chao S., Lazo G.R., Hummel D.D., Anderson O.D., Anderson J.A., Gonzalez-Hernandez J.L., Peng J.H., Lapitan N., Qi L.L., Echalier B., Gill B.S., Hossain K.G., Kalavacharla V., Kianian S.F., Sandhu D., Erayman M., Gill K.S., McGuire P.E., Qualset C.O., Sorrells M.E. Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1 // Genetics. 2004. V. 168. P. 639–650.; Nagata T., Yamada H., Du Z., Todoriki S., Kikuchi S. Microarray analysis of genes that respond to gamma-irradiation in Arabidopsis // J. Agric. Food Chem. 2005. V. 53. P. 1022–1030.; Napoli C., Lemieux C., Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans // Plant Cell. 1990. V. 2. P. 279–289.; Nesi N., Debeaujon I., Jond C., Pelletier G., Caboche M., Lepiniec L. The TT8 gene encodes a basic helix-loophelix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques // Plant Cell. 2000. V. 12. P. 1863–1878.; Nozzolillo С., Isabelle P., Andersen O.M., Abou-Zaid M. Anthocyanins of jack pine (Pinus banksiana) seedlings // Can. J. Bot. 2002. V. 80. P. 796–801.; Payne C.T., Zhang F., Lloyd A.M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1 // Genetics. 2000. V. 156. P. 1349–1362.; Paz-Ares J., Ghosal D., Wienand U., Peterson P.A., Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators // EMBO J. 1987. V. 6. P. 3553–3558.; Peer W.A., Murphy A.S. Flavonoids as signal molecules // The Science of Flavonoids / Ed. P.E. Grotewold. N.Y.: Springer, 2008. P. 239–268.; Petroni K., Cominelli E., Consonni G., Gusmaroli G., Gavazzi G.,Tonelli C. The developmental expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation // Genetics. 2000. V. 155. P. 323–336.; Plaza B.M., Jimenez S., Segura M.L., Contreras J.I., Lao M.T. Physiological stress caused by salinity in cordyline fruticosa and its indicators // Commun. Soil Sci. Plant Anal. 2009. V. 40. P. 473–484.; Quattrocchio F., Wing J.F., van der Woude K., Mol J.N.M., Koes R. Analysis of bHLH and MYB domain proteins: species specifi c regulatory differences are caused by divergent evolution of target anthocyanin genes // Plant J. 1998. V. 13. 475–488.; Quattrocchio F., Wing J., van der Woude K., Souer E., de Vetten N., Mol J., Koes R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color // Plant Cell. 1999. V. 11. P. 1433–1444.; Quattrocchio F., Verweij W., Kroon A., Spelt C., Mol J., Koes R. PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidifi cation through interactions with basichelix–loop–helix transcription factors of the anthocyanin pathway // Plant Cell. 2006. V. 18. P. 1274–1291.; Quattrocchio F., Baudry A., Lepiniec L., Grotewold E. The regulation of fl avonoid biosynthesis // The Science of Flavonoids / Ed. P.E. Grotewold. N.Y.: Springer, 2008. P. 97–122.; Rausher M.D. The evolution of fl avonoids and their genes // The Science of Flavonoids / Ed. P.E. Grotewold. N.Y.: Springer, 2008. P. 175–211.; Romero I., Fuertes A., Benito M.J., Malpica J.M., Leyva A., Paz-Ares J. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana // Plant J. 1998. V. 14. P. 273–284.; Ryan K.G., Swinny E.E., Markham K.R., Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves // Phytochemistry. 2002. V. 59. P. 23–32.; Selinger D.A., Chandler V.L. Major recent and independent changes in the levels and patterns of expression have occurred at the b gene, a regulatory locus in maize // Proc. Natl Acad. Sci. USA. 1999. V. 96. P. 15007–15012.; Shirley B.W., Hanley S., Goodman H.M. Effect of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations // Plant Cell. 1992. V. 4. P. 333–347.; Shirley B.W., Kubasek W.L., Storz G., Bruggemann E., Koornneef M., Ausubel F.M., Goodman H.M. Analysis of Arabidopsis mutants defi cient in fl avonoid biosynthesis // Plant J. 1995. V. 8. P. 659–671.; Shoeva O.Y., Dobrovolskaya O.B., Leonova I.N., Salina E.A., Khlestkina E.K. Functional divergence between the B, S and G genomes estimated using wheat introgression lines // Genetica. 2014b. Under review.; Shoeva O.Y., Gordeeva E.I., Khlestkina E.K. The genetic regulation of anthocyanin biosynthesis in wheat pericarp // Molecules. 2014c. V. 19. P. 20266–20279.; Shoeva O.Y., Khlestkina E.K., Berges H., Salina E.A. The homoeologous genes encoding chalcone-fl ava-none isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant // Gene. 2014a. V. 538. P. 334–341; Smith T.F., Gaitatzes C., Saxena K., Neer E.J. The WD repeat: a common architecture for diverse functions // Trends Biochem. Sci. 1999. V. 24. Р. 181–185.; Spelt C., Quattrocchio F., Mol J., Koes R. Anthocyanin1 of petunia encodes a basic helix–loop–helix protein that directly activates transcription of stuctural anthocyanin genes // Plant Cell. 2000. V. 12. P. 1619–1631.; Stam M., Scheid O.M. Paramutation: an encounter leaving a lasting impression // Trends Plant Sci. 2005. V. 10. P. 283–290.; Stracke R., Werber M., Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana // Curr. Opin. Plant Biol. 2001. V. 4. P. 447–456.; Taylor L.P., Briggs W.R. Genetic regulation and photocontrol of anthocyanin accumulation in maize seedlings // Plant Cell. 1990. V. 2. P. 115–127.; Tereshchenko O.Y., Arbuzova V.S., Khlestkina E.K. Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes // J. Cereal Sci. 2013. V. 57. Р. 10–13.; Tereshchenko O.Y., Gordeeva E.I., Arbuzova V.S., Börner A., Salina E.A., Khlestkina E.K. The D genome carries a gene determining purple grain colour in wheat // Cereal Res. Commun. 2012. V. 40. Р. 334–341.; Van Nocker S., Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function // BMC Genomics. 2003. V. 4. P. 50.; Vetten de N., Quattrocchio F., Mol J., Koes R. The an11 locus controlling fl ower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals // Genes Dev. 1997. V. 11. P. 1422–1434.; Walker A.R., Davison P.A., Bolognesi-Winfield A.C., James C.M., Srinivasan N., Blundell T.L., Esch J.J.; Marks M.D., Gray J.C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein // Plant Cell. 1999. V. 11. P. 1337–1350.; Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology // Plant Physiol. 2001а. V. 126. P. 485–493.; Winkel-Shirley B. It takes garden. How work on diverse plant species has contributed to an understanding of fl avonoid metabolism // Plant Physiol. 2001b. V. 127. P. 1399–1404.; Winkel-Shirley B. Biosynthesis of fl avonoids and effects of stress // Cur. Op. Plant Biol. 2002. V. 5. P. 218–223.; Winkel B.S.J. The biosynthesis of fl avonoids // The Science of Flavonoids / Ed. P.E. Grotewold. N.Y.: Springer, 2008. P. 71–95.; Yang G., Li B., Gao J., Liu J., Zhao X., Zheng Q., Tong Y., Li Z. Cloning and expression of two chalcone synthase and a fl avonoid 3′5′-Hydroxylase 3′-end cDNAs from developing seeds of blue-grained wheat involved in anthocyanin biosynthetic pathway // J. Integr. Plant Biol. (Acta Bot. Sin.). 2004. V. 46. P. 588–594.; Zhang F., Gonzalez A., Zhao M., Payne T., Llyod A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis // Development. 2003. V. 130. P. 4859–4869.; https://vavilov.elpub.ru/jour/article/view/306
    • Rights:
      Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access). ; Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
    • الرقم المعرف:
      edsbas.9D1ECB76