Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Normal approximation of Poisson functionals in Kolmogorov distance

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Schulte, Matthias
  • المصدر:
    Schulte, Matthias (2016). Normal approximation of Poisson functionals in Kolmogorov distance. Journal of theoretical probability, 29(1), pp. 96-117. Springer 10.1007/s10959-014-0576-6
  • الموضوع:
  • نوع التسجيلة:
    article in journal/newspaper
  • اللغة:
    English
  • معلومة اضافية
    • بيانات النشر:
      Springer
    • الموضوع:
      2016
    • Collection:
      BORIS (Bern Open Repository and Information System, University of Bern)
    • نبذة مختصرة :
      Peccati, Solè, Taqqu, and Utzet recently combined Stein’s method and Malliavin calculus to obtain a bound for the Wasserstein distance of a Poisson functional and a Gaussian random variable. Convergence in the Wasserstein distance always implies convergence in the Kolmogorov distance at a possibly weaker rate. But there are many examples of central limit theorems having the same rate for both distances. The aim of this paper was to show this behavior for a large class of Poisson functionals, namely so-called U-statistics of Poisson point processes. The technique used by Peccati et al. is modified to establish a similar bound for the Kolmogorov distance of a Poisson functional and a Gaussian random variable. This bound is evaluated for a U-statistic, and it is shown that the resulting expression is up to a constant the same as it is for the Wasserstein distance.
    • File Description:
      application/pdf
    • Relation:
      https://boris.unibe.ch/93226/
    • الدخول الالكتروني :
      https://boris.unibe.ch/93226/1/art%253A10.1007%252Fs10959-014-0576-6.pdf
      https://boris.unibe.ch/93226/8/NormalApproximationOfPoissonFunctionalsInKolmogorovDistance.pdf
      https://boris.unibe.ch/93226/
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.9B6F1B60