Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Segment-before-Detect: Vehicle Detection and Classification through Semantic Segmentation of Aerial Images ; Segmenter-pour-détecter: détection et classification de véhicules par segmentation sémantique d'images aériennes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      ONERA - The French Aerospace Lab Palaiseau; ONERA-Université Paris Saclay (COmUE); Environment observation with complex imagery (OBELIX); Université de Bretagne Sud (UBS)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5); Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      MDPI
    • الموضوع:
      2017
    • Collection:
      ONERA: HAL (Centre français de recherche aérospatiale / French Aerospace Lab)
    • نبذة مختصرة :
      International audience ; Like computer vision before, remote sensing has been radically changed by the introduction of deep learning and, more notably, Convolution Neural Networks. Land cover classification, object detection and scene understanding in aerial images rely more and more on deep networks to achieve new state-of-the-art results. Recent architectures such as Fully Convolutional Networks can even produce pixel level annotations for semantic mapping. In this work, we present a deep-learning based segment-before-detect method for segmentation and subsequent detection and classification of several varieties of wheeled vehicles in high resolution remote sensing images. This allows us to investigate object detection and classification on a complex dataset made up of visually similar classes, and to demonstrate the relevance of such a subclass modeling approach. Especially, we want to show that deep learning is also suitable for object-oriented analysis of Earth Observation data as effective object detection can be obtained as a byproduct of accurate semantic segmentation. First, we train a deep fully convolutional network on the ISPRS Potsdam and the NZAM/ONERA Christchurch datasets and show how the learnt semantic maps can be used to extract precise segmentation of vehicles. Then, we show that those maps are accurate enough to perform vehicle detection by simple connected component extraction. This allows us to study the repartition of vehicles in the city. Finally, we train a Convolutional Neural Network to perform vehicle classification on the VEDAI dataset, and transfer its knowledge to classify the individual vehicle instances that we detected.
    • Relation:
      hal-01529624; https://hal.science/hal-01529624; https://hal.science/hal-01529624/document; https://hal.science/hal-01529624/file/rs2017audebert.pdf
    • الرقم المعرف:
      10.3390/rs9040368
    • الدخول الالكتروني :
      https://hal.science/hal-01529624
      https://hal.science/hal-01529624/document
      https://hal.science/hal-01529624/file/rs2017audebert.pdf
      https://doi.org/10.3390/rs9040368
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.9A110070