Contributors: ClinicnCell SAS; Clinic'n'Cell SAS; Institut des Sciences de la Vigne et du Vin Villenave d'Ornon (ISVV); Université de Bordeaux (UB); Plateforme Bordeaux Metabolome; Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-MetaboHUB-Bordeaux; MetaboHUB-MetaboHUB; Valbiotis R & D Riom; Valbiotis SAS; Partenaires INRAE-Partenaires INRAE; Valbiotis R&D Perigny; valbiotis; Centre hospitalo-universitaire, Clermont-Ferrand, Centre d'Investigation Clinique, INSERM, CIC1405, Clermont-Ferrand, France; Inserm, F-CRIN, Innovative Clinical Research Network in VACcinology (I-REIVAC), Paris, France; Unité de Nutrition Humaine (UNH); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA); European Project: 2015RPC-BAFE-114
نبذة مختصرة : International audience ; TOTUM-070 is a patented polyphenol-rich blend of five different plant extracts showing separately a latent effect on lipid metabolism and potential synergistic properties. In this study, we investigated the health benefit of such a formula. Using a preclinical model of high fat diet, TOTUM-070 (3 g/kg of body weight) limited the HFD-induced hyperlipemia with a reduction in triglyceride (−32% after 6 weeks; −20.3% after 12 weeks) and non-HDL cholesterol levels (−21% after 6 weeks; −38.4% after 12 weeks). To further investigate such a benefit and its underlying mechanisms in humans, we designed an ex vivo clinical approach to collect the circulating bioactives resulting from TOTUM-070 ingestion and to determine their biological activities on human hepatocytes. Human serum was obtained from healthy subjects before and after intake of TOTUM-070 (4995 mg). The presence of circulating metabolites was assessed by UPLC-MS/MS. Serum containing metabolites was further incubated with hepatocytes cultured in a lipotoxic environment (palmitate, 250 µM). RNA sequencing analyses show that lipid metabolism was one of the most impacted processes. Using histologic, proteomic, and enzymatic assays, the effects of human TOTUM-070 bioactives on hepatocyte metabolism were characterized by (1) the inhibition of lipid storage, including both (2) triglycerides (−41%, p < 0.001) and (3) cholesterol (−50%, p < 0.001) intracellular content, (4) a reduced de novo cholesterol synthesis (HMG-CoA reductase activity −44%, p < 0.001), and (5) a lowered fatty acid synthase protein level (p < 0.001). Altogether, these data support the beneficial impact of TOTUM-070 on lipid metabolism and provide new biochemical insights in human mechanisms occurring in liver cells.
No Comments.