نبذة مختصرة : We investigate various boundary decay estimates for p(⋅)-harmonic functions. For domains in Rn,n≥2satisfying the ball condition (C1,1-domains), we show the boundary Harnack inequality for p(⋅)-harmonic functions under the assumption that the variable exponent p is a bounded Lipschitz function. The proof involves barrier functions and chaining arguments. Moreover, we prove a Carleson-type estimate for p(⋅)-harmonic functions in NTA domains in Rn and provide lower and upper growth estimates and a doubling property for a p(⋅)-harmonic measure. ; arXiv:1405.2678
No Comments.