Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The boundary Harnack inequality for variable exponent p-Laplacian, Carleson estimates, barrier functions and p(⋅)-harmonic measures

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Umeå universitet, Institutionen för matematik och matematisk statistik
      Institute of Mathematics of the Polish Academy of Sciences, Warsaw, Poland
    • الموضوع:
      2016
    • Collection:
      Umeå University: Publications (DiVA)
    • نبذة مختصرة :
      We investigate various boundary decay estimates for p(⋅)-harmonic functions. For domains in Rn,n≥2satisfying the ball condition (C1,1-domains), we show the boundary Harnack inequality for p(⋅)-harmonic functions under the assumption that the variable exponent p is a bounded Lipschitz function. The proof involves barrier functions and chaining arguments. Moreover, we prove a Carleson-type estimate for p(⋅)-harmonic functions in NTA domains in Rn and provide lower and upper growth estimates and a doubling property for a p(⋅)-harmonic measure. ; arXiv:1405.2678
    • File Description:
      application/pdf
    • Relation:
      Annali di Matematica Pura ed Applicata, 0373-3114, 2016, 195:2, s. 623-658; http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89627; ISI:000373086500019; Scopus 2-s2.0-84923250394
    • الرقم المعرف:
      10.1007/s10231-015-0481-3
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.98FE1699