Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Predictive Models for Emergency Department Triage using Machine Learning: A Review

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      École des Hautes Études en Santé Publique EHESP (EHESP); Département Méthodes quantitatives en santé publique (METIS); Arènes: politique, santé publique, environnement, médias (ARENES); Université de Rennes (UR)-Institut d'Études Politiques IEP - Rennes-École des Hautes Études en Santé Publique EHESP (EHESP)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS); Recherche sur les services et le management en santé (RSMS); Université de Rennes (UR)-École des Hautes Études en Santé Publique EHESP (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Clinical Epidemiology Applied to Osteoarticular Diseases; Centre for Research in Epidemiology and Statistics; Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
    • بيانات النشر:
      CCSD
      Fortune Journals
    • الموضوع:
      2022
    • Collection:
      Archive Ouverte de l'Université Rennes (HAL)
    • نبذة مختصرة :
      International audience ; Background: Recently, many research groups have tried to develop emergency department triage decision support systems based on big volumes of historical clinical data to differentiate and prioritize patients. Machine learning models might improve the predictive capacity of emergency department triage systems. The aim of this review was to assess the performance of recently described machine learning models for patient triage in emergency departments, and to identify future challenges.Methods: Four databases (ScienceDirect, PubMed, Google Scholar and Springer) were searched using key words identified in the research questions. To focus on the latest studies on the subject, the most cited papers between 2018 and October 2021 were selected. Only works with hospital admission and critical illness as outcomes were included in the analysis.Results: Eleven articles concerned the two outcomes (hospital admission and critical illness) and developed 55 predictive models. Random Forest and Logistic Regression were the most commonly used prediction algorithms, and the receiver operating characteristic-area under the curve (ROC-AUC) the most frequently used metric to assess the algorithm prediction performance. Random Forest and Logistic Regression were the most discriminant models according to the selected studies.Conclusions: Machine learning-based triage systems could improve decision-making in emergency departments, thus leading to better patients’ outcomes. However, there is still scope for improvement concerning the prediction performance and explicability of ML models.
    • الرقم المعرف:
      10.26502/ogr082
    • الدخول الالكتروني :
      https://hal.science/hal-03830019
      https://hal.science/hal-03830019v1/document
      https://hal.science/hal-03830019v1/file/Gao_predictive-models-for-emergency-department-triage-using-machine-learning-a-review.pdf
      https://doi.org/10.26502/ogr082
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.98D1FBD7