نبذة مختصرة : Cette thèse est consacrée à la poursuite du programme de géométrisation de la correspondance de Langlands locale p-adique initié par Colmez, Dospinescu et Niziol dans leur article de 2020, sur le modèle de la correspondance classique. Ils démontrent que les représentations galoisiennes de dimension 2 qui sont supercuspidales (sous-entendue de de Rham) et à poids de Hodge-Tate 0 et 1 apparaissent dans la cohomologie étale p-adique de la tour de revêtement du demi-plan de Drinfeld et que leur multiplicité est donnée par la correspondance de Langlands p-adique. Le résultat principal de cette thèse est l'analogue de ce résultat en poids quelconques, en considérant la cohomologie étale p-adique à coefficients dans les puissances symétriques du système local universel sur la tour de Drinfeld. Une différence frappante est que l'on voit aussi apparaitre les représentations spéciales dans la cohomologie de la tour à coefficients, avec les multiplicités attendues. Le point clé est que les systèmes locaux que l'on considère s'avèrent être particulièrement simples : se sont des opers isotriviaux.Ainsi, la première partie de cette thèse est consacrée à l'étude des systèmes locaux p-adiques isotriviaux et au calcul dans le cas des opers isotriviaux sur les courbes d'un diagramme reliant la cohomologie proétale du système local à la cohomologie de Hyodo-Kato et la cohomologie de de Rham de la courbe. La seconde partie de cette thèse est alors l'application de ces résultats au cas de la tour de Drinfeld qui permettent le calcul des multiplicités évoquées. ; This thesis is devoted to further developing the program of geometrization of the local p-adic Langlands correspondence, which was initiated by Colmez, Dospinescu and Niziol in their 2020 paper. They have shown that 2-dimensional Galois representations that are supercuspidal (implicitly de Rham) and with Hodge-Tate weights 0 and 1, appear in the p-adic étale cohomology of the coverings of Drinfeld's half-plane and that their multiplicity is given by the p-adic Langlands ...
No Comments.