نبذة مختصرة : An accurate, high-speed, fully differential difference amplifier for current sensing utilizing the chopper approach was implemented in a 0.18 μm complementary metal-oxide-semiconductor (CMOS) technology. Unlike state-of-the-art solutions, we use a higher chopping frequency in the MHz range due to the bandwidth requirements of the introduced circuits for the latter application, namely, low-side phase-current measurement in motor control circuits. Except the low-pass filter (LPF) effect of the output stage, no additional LPF was integrated in hardware at the output of the circuits. We show that on the other hand a digital LPF, which can be integrated in the field-programmable gate-array (FPGA) logic or microcontroller used for the motor control, offers a higher flexibility in terms of filter design. Weak input signals of only few mV can be reconstructed with a high accuracy. This is demonstrated for a 500 kHz rectangular signal and a chopping frequency of 20 MHz. Note that an input-signal frequency of several hundreds of kHz with harmonics in the MHz region is very challenging for chopper amplifiers. Still, a significant decrease of the input-referred noise is demonstrated, especially cancelling out the 1/f-noise achieving a remaining noise floor of approximately 8.5 nV/√Hz. Overall, the input-referred noise level can be pushed far below 50 μV (root mean square). Moreover, using a quite relaxed second-order Butterworth filter with a 3 dB corner frequency of 1 MHz, input-referred noise levels of 10 μV (root mean square) can be easily achieved at the costs of reduced bandwidth. The lowest achieved input offset is 50 μV. The gain is adjusted by resistive feedback and is approximately 40 dB. Hence, the amplifier is suitable for current sensing in motor control circuits, and a significant reduction of the shunt resistance typically used for this purpose will be possible.
No Comments.