Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Prediction of Myocardial Infarction From Patient Features With Machine Learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST); Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Institut de Recherche en Systèmes Electroniques Embarqués (IRSEEM); Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Normandie Université (NU)-École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC); Service de Cardiologie CHU de Dijon; Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon); CArdiac Simulation and Imaging Software (CASIS); Imagerie et Vision Artificielle Dijon (ImViA); Université de Bourgogne (UB); Service de RMN Spectroscopie, Médecine Nucléaire (CHU de Dijon); ANR-15-IDEX-0003,BFC,ISITE " BFC(2015); ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017)
    • بيانات النشر:
      HAL CCSD
      Frontiers Media
    • الموضوع:
      2022
    • Collection:
      Université de Bourgogne (UB): HAL
    • نبذة مختصرة :
      International audience ; This study proposes machine learning-based models to automatically evaluate the severity of myocardial infarction (MI) from physiological, clinical, and paraclinical features. Two types of machine learning models are investigated for the MI assessment: the classification models classify the presence of the infarct and the persistent microvascular obstruction (PMO), and the regression models quantify the Percentage of Infarcted Myocardium (PIM) of patients suspected of having an acute MI during their reception in the emergency department. The ground truth labels for these supervised models are derived from the corresponding Delayed Enhancement MRI (DE-MRI) exams and manual annotations of the myocardium and scar tissues. Experiments were conducted on 150 cases and evaluated with cross-validation. Results showed that for the MI (PMO inclusive) and the PMO (infarct exclusive), the best models obtained respectively a mean error of 0.056 and 0.012 for the quantification, and 88.67 and 77.33% for the classification accuracy of the state of the myocardium. The study of the features' importance also revealed that the troponin value had the strongest correlation to the severity of the MI among the 12 selected features. For the proposal's translational perspective, in cardiac emergencies, qualitative and quantitative analysis can be obtained prior to the achievement of MRI by relying only on conventional tests and patient features, thus, providing an objective reference for further treatment by physicians
    • الرقم المعرف:
      10.3389/fcvm.2022.754609
    • الدخول الالكتروني :
      https://hal.science/hal-04635780
      https://hal.science/hal-04635780v1/document
      https://hal.science/hal-04635780v1/file/fcvm-09-754609.pdf
      https://doi.org/10.3389/fcvm.2022.754609
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.97612B97