Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Loss of Mitochondrial Ca 2+ Uniporter Limits Inotropic Reserve and Provides Trigger and Substrate for Arrhythmias in Barth Syndrome Cardiomyopathy

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2021
    • Collection:
      Istituto Nazionale di Fisica Nucleare (INFN): Open Access Repository
    • نبذة مختصرة :
      Background: Barth syndrome (BTHS) is caused by mutations of the gene encoding tafazzin, which catalyzes maturation of mitochondrial cardiolipin and often manifests with systolic dysfunction during early infancy. Beyond the first months of life, BTHS cardiomyopathy typically transitions to a phenotype of diastolic dysfunction with preserved ejection fraction, blunted contractile reserve during exercise, and arrhythmic vulnerability. Previous studies traced BTHS cardiomyopathy to mitochondrial formation of reactive oxygen species (ROS). Because mitochondrial function and ROS formation are regulated by excitation-contraction coupling, integrated analysis of mechano-energetic coupling is required to delineate the pathomechanisms of BTHS cardiomyopathy. Methods: We analyzed cardiac function and structure in a mouse model with global knockdown of tafazzin ( Taz -KD) compared with wild-type littermates. Respiratory chain assembly and function, ROS emission, and Ca 2+ uptake were determined in isolated mitochondria. Excitation-contraction coupling was integrated with mitochondrial redox state, ROS, and Ca 2+ uptake in isolated, unloaded or preloaded cardiac myocytes, and cardiac hemodynamics analyzed in vivo. Results: Taz -KD mice develop heart failure with preserved ejection fraction (>50%) and age-dependent progression of diastolic dysfunction in the absence of fibrosis. Increased myofilament Ca 2+ affinity and slowed cross-bridge cycling caused diastolic dysfunction, in part, compensated by accelerated diastolic Ca 2+ decay through preactivated sarcoplasmic reticulum Ca 2 + -ATPase. Taz deficiency provoked heart-specific loss of mitochondrial Ca 2+ uniporter protein that prevented Ca 2+ -induced activation of the Krebs cycle during β-adrenergic stimulation, oxidizing pyridine nucleotides and triggering arrhythmias in cardiac myocytes. In vivo, Taz -KD mice displayed prolonged QRS duration as a substrate for arrhythmias, and a lack of inotropic response to β-adrenergic stimulation. Cellular arrhythmias and QRS ...
    • Relation:
      url:https://www.openaccessrepository.it/communities/itmirror; https://www.openaccessrepository.it/record/181976
    • الرقم المعرف:
      10.1161/circulationaha.121.053755
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.958D1349