Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

On the asymptotic derivation of Winkler-type energies from 3D elasticity

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Center for Computation and Technology Baton Rouge (CCT); Louisiana State University (LSU); Department of Mathematics (DM)
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2015
    • Collection:
      ENSTA ParisTech, Université Paris-Saclay: HAL (École Nationale Supérieure de Techniques Avancées)
    • نبذة مختصرة :
      We show how bilateral, linear, elastic foundations (i.e. Winkler foundations) often regarded as heuristic, phenomenological models, emerge asymptotically from standard, linear, three-dimensional elasticity. We study the parametric asymptotics of a non-homogeneous linearly elastic bi-layer at- tached to a rigid substrate as its thickness vanishes, for varying thickness and stiffness ratios. By using rigorous arguments based on energy estimates, we provide a first rational and constructive justification of reduced foundation models. We establish the variational weak convergence of the three-dimensional elasticity problem to a two-dimensional one, of either a "membrane over in-plane elastic foundation", or a "plate over transverse elastic foundation". These two regimes are function of the only two parameters of the system, and a phase diagram synthesizes their domains of validity. Moreover, we derive explicit formulæ relating the effective coefficients of the elastic foundation to the elastic and geometric parameters of the original three-dimensional system.
    • Relation:
      hal-01064163; https://ensta-paris.hal.science/hal-01064163; https://ensta-paris.hal.science/hal-01064163/document; https://ensta-paris.hal.science/hal-01064163/file/paper_asympt3d_HAL.pdf
    • الرقم المعرف:
      10.1007/s10659-015-9528-3
    • الدخول الالكتروني :
      https://ensta-paris.hal.science/hal-01064163
      https://ensta-paris.hal.science/hal-01064163/document
      https://ensta-paris.hal.science/hal-01064163/file/paper_asympt3d_HAL.pdf
      https://doi.org/10.1007/s10659-015-9528-3
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.944D46C0