بيانات النشر: Uppsala universitet, Öron-, näs- och halssjukdomar
Western Univ, Dept Otolaryngol Head & Neck Surg, London, ON, Canada
Western Univ, Dept Otolaryngol Head & Neck Surg, London, ON, Canada;Western Univ, Dept Med Biophys, London, ON, Canada;Western Univ, Dept Elect & Comp Engn, London, ON, Canada
TAYLOR & FRANCIS LTD
نبذة مختصرة : Objective: We used synchrotron radiation phase contrast imaging (SR-PCI) to study the 3D microanatomy of the basilar membrane (BM) and its attachment to the spiral ligament (SL) (with a conceivable secondary spiral lamina [SSL] or secondary spiral plate) at the round window membrane (RWM) in the human cochlea. The conception of this complex anatomy may be essential for accomplishing structural preservation at cochlear implant surgery. Material and methods: Sixteen freshly fixed human temporal bones were used to reproduce the BM, SL, primary and secondary osseous spiral laminae (OSL), and RWM using volume-rendering software. Confocal microscopy immunohistochemistry (IHC) was performed to analyze the molecular constituents. Results: SR-PCI reproduced the soft tissues including the RWM, Reissner's membrane (RM), and the BM attachment to the lateral wall (LW) in three dimensions. A variable SR-PCI contrast enhancement was recognized in the caudal part of the SL facing the scala tympani (ST). It seemed to represent a SSL allied to the basilar crest (BC). The SSL extended along the postero-superior margin of the round window (RW) and immunohistochemically expressed type II collagen. Conclusions: Unlike in several mammalian species, the human SSL is restricted to the most basal portion of the cochlea around the RW. It anchors the BM and may influence its hydro-mechanical properties. It could also help to shield the BM from the RW. The microanatomy should be considered at cochlear implant surgery.
No Comments.