Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Orientations and the supersingular endomorphism ring problem

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Lithe and fast algorithmic number theory (LFANT); Institut de Mathématiques de Bordeaux (IMB); Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Centre National de la Recherche Scientifique (CNRS); ANR-20-CE40-0013,MELODIA,Méthodes pour les variétés abéliennes de petite dimension(2020); ANR-19-CE48-0008,CIAO,Cryptographie, isogenies et variété abéliennes surpuissantes(2019)
    • بيانات النشر:
      HAL CCSD
      Springer International Publishing
    • الموضوع:
      2022
    • Collection:
      Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
    • الموضوع:
    • نبذة مختصرة :
      International audience ; We study two important families of problems in isogenybased cryptography and how they relate to each other: computing the endomorphism ring of supersingular elliptic curves, and inverting the action of class groups on oriented supersingular curves. We prove that these two families of problems are closely related through polynomialtime reductions, assuming the generalised Riemann hypothesis. We identify two classes of essentially equivalent problems. The first class corresponds to the problem of computing the endomorphism ring of oriented curves. The security of a large family of cryptosystems (such as CSIDH) reduces to (and sometimes from) this class, for which there are heuristic quantum algorithms running in subexponential time. The second class corresponds to computing the endomorphism ring of orientable curves. The security of essentially all isogeny-based cryptosystems reduces to (and sometimes from) this second class, for which the best known algorithms are still exponential. Some of our reductions not only generalise, but also strengthen previously known results. For instance, it was known that in the particular case of curves defined over $\mathbb{F}_p$, the security of CSIDH reduces to the endomorphism ring problem in subexponential time. Our reductions imply that the security of CSIDH is actually equivalent to the endomorphism ring problem, under polynomial time reductions (circumventing arguments that proved such reductions unlikely).
    • Relation:
      hal-03799393; https://hal.science/hal-03799393; https://hal.science/hal-03799393/document; https://hal.science/hal-03799393/file/paper.pdf
    • الرقم المعرف:
      10.1007/978-3-031-07082-2_13
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.941DA915