Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Stable rank-adaptive Dynamically Orthogonal Runge-Kutta schemes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2022
    • Collection:
      ArXiv.org (Cornell University Library)
    • نبذة مختصرة :
      We develop two new sets of stable, rank-adaptive Dynamically Orthogonal Runge-Kutta (DORK) schemes that capture the high-order curvature of the nonlinear low-rank manifold. The DORK schemes asymptotically approximate the truncated singular value decomposition at a greatly reduced cost while preserving mode continuity using newly derived retractions. We show that arbitrarily high-order optimal perturbative retractions can be obtained, and we prove that these new retractions are stable. In addition, we demonstrate that repeatedly applying retractions yields a gradient-descent algorithm on the low-rank manifold that converges superlinearly when approximating a low-rank matrix. When approximating a higher-rank matrix, iterations converge linearly to the best low-rank approximation. We then develop a rank-adaptive retraction that is robust to overapproximation. Building off of these retractions, we derive two rank-adaptive integration schemes that dynamically update the subspace upon which the system dynamics are projected within each time step: the stable, optimal Dynamically Orthogonal Runge-Kutta (so-DORK) and gradient-descent Dynamically Orthogonal Runge-Kutta (gd-DORK) schemes. These integration schemes are numerically evaluated and compared on an ill-conditioned matrix differential equation, an advection-diffusion partial differential equation, and a nonlinear, stochastic reaction-diffusion partial differential equation. Results show a reduced error accumulation rate with the new stable, optimal and gradient-descent integrators. In addition, we find that rank adaptation allows for highly accurate solutions while preserving computational efficiency. ; Comment: 29 pages, 8 figures
    • Relation:
      http://arxiv.org/abs/2211.07852
    • الدخول الالكتروني :
      http://arxiv.org/abs/2211.07852
    • الرقم المعرف:
      edsbas.93D2D23E