Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Multioutput Gaussian processes with functional data: A study on coastal flood hazard assessment

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Matériaux Céramiques et de Mathématiques (CERAMATHS); Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA); Bureau de Recherches Géologiques et Minières (BRGM); Institut de Mathématiques de Toulouse UMR5219 (IMT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS); ANR-16-CE04-0011,RISCOPE,Système d'alerte de submersion côtière centré sur le risque(2016)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2021
    • Collection:
      BRGM: HAL (Bureau de Recherches Géologiques et Minières)
    • نبذة مختصرة :
      International audience ; Surrogate models are often used to replace costly-to-evaluate complex coastal codes to achieve substantial computational savings. In many of those models, the hydrometeorological forcing conditions (inputs) or flood events (outputs) are conveniently parameterized by scalar representations, neglecting that the inputs are actually time series and that floods propagate spatially inland. Both facts are crucial in flood prediction for complex coastal systems. Our aim is to establish a surrogate model that accounts for time-varying inputs and provides information on spatially varying inland flooding. We introduce a multioutput Gaussian process model based on a separable kernel that correlates both functional inputs and spatial locations. Efficient implementations consider tensor-structured computations or sparse-variational approximations. In several experiments, we demonstrate the versatility of the model for both learning maps and inferring unobserved maps, numerically showing the convergence of predictions as the number of learning maps increases. We assess our framework in a coastal flood prediction application. Predictions are obtained with small error values within computation time highly compatible with short-term forecast requirements (on the order of minutes compared to the days required by hydrodynamic simulators). We conclude that our framework is a promising approach for forecast and early-warning systems.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2007.14052; hal-03412417; https://brgm.hal.science/hal-03412417; https://brgm.hal.science/hal-03412417v2/document; https://brgm.hal.science/hal-03412417v2/file/Preprint%20Idier.pdf; ARXIV: 2007.14052
    • الرقم المعرف:
      10.1016/j.ress.2021.108139
    • الدخول الالكتروني :
      https://brgm.hal.science/hal-03412417
      https://brgm.hal.science/hal-03412417v2/document
      https://brgm.hal.science/hal-03412417v2/file/Preprint%20Idier.pdf
      https://doi.org/10.1016/j.ress.2021.108139
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.93C22D0C