نبذة مختصرة : Limestone Calcined Clay Cement (LC3) Technology is a low carbon cement that combines limestone, calcined clay, and clinker, aiming to reduce CO2 emissions by 40%-50% during production. In this study, large-scale investigations were conducted to explore LC3 as a potential substitute for conventional cement (CC). Mechanical and durability tests were performed on LC3, comparing results with CC and Pozzolana Cement (PC) concretes. The findings revealed that LC3 concrete exhibited promising early-stage strength similar to CC concrete. However, at 90 days, LC3 showcased a 10% higher strength compared to CC concrete. Additionally, LC3 displayed a remarkable 45% increase in resistance to moisture ingress, indicating improved durability over CC concrete. These results highlight the efficacy of low carbon cement in developing ternary blended cements that offer early strength and enhanced durability, making it a viable eco-friendly alternative in the construction industry. ; La tecnología de cemento de arcilla calcinada con piedra caliza (LC3) es un cemento con bajo contenido de carbono que combina piedra caliza, arcilla calcinada y clínker, con el objetivo de reducir las emisiones de CO2 en un 40 %-50 % durante la producción. En este estudio, se realizaron investigaciones a gran escala para explorar LC3 como un posible sustituto del cemento convencional (CC). Se realizaron pruebas mecánicas y de durabilidad al LC3, comparando resultados con los hormigones CC y Cemento con Puzolanas (PC). Los hallazgos revelaron que el hormigón LC3 exhibió una prometedora resistencia en la etapa inicial similar al hormigón CC. Sin embargo, a los 90 días, LC3 mostró una resistencia un 10 % mayor en comparación con el hormigón CC. Además, LC3 mostró un aumento notable del 45 % en la resistencia a la penetración de agua, lo que indica una mayor durabilidad que el hormigón CC. Estos resultados destacan la eficacia del cemento con bajo contenido de carbono en el desarrollo de cementos mixtos ternarios que ofrecen una resistencia temprana y una ...
Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3551/4280; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3551/4281; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3551/4282; Schmidt, W.; Alexander, M.; John, V. (2018) Education for sustainable use of cement based materials. Cem. Concr. Res. 114, 103-114. https://doi.org/10.1016/j.cemconres.2017.08.009; Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. (2018) Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017; Hanein, T.; Thienel, K.C.; Zunino, F.; Marsh, A.; Maier, M.; Wang, B.; Canut, M.; Juenger, M.C.; Ben Haha, M.; Avet, F.; Parashar, A. (2022) Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Mater. Struct. 55 [3], 1-29. https://doi.org/10.1617/s11527-021-01807-6; Pillai, R.G.; Gettu, R.; Santhanam, M.; Rengaraju, S.; Dhandapani, Y.; Rathnarajan, S.; Basavaraj, A.S. (2019) Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cem. Concr. Res. 118, 111-119. https://doi.org/10.1016/j.cemconres.2018.11.019; Berriel, S.S.; Favier, A.; Domínguez, E.R.; Machado, I.S.; Heierli, U.; Scrivener, K.; Hernández, F.M.; Habert, G. (2016) Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. J. Clean. Prod. 124, 361-369. https://doi.org/10.1016/j.jclepro.2016.02.125; Sharma, M.; Bishnoi, S.; Martirena, F.; Scrivener, K. (2021) Limestone calcined clay cement and concrete: A state-of-the-art review. Cem. Concr. Res. 149, 106564. https://doi.org/10.1016/j.cemconres.2021.106564; Vizcaíno-Andrés, L. M.; Sánchez-Berriel, S.; Damas-Carrera, S.; Pérez-Hernández, A.; Scrivener, K. L.; Martirena-Hernández, J. F. (2015) Industrial trial to produce a low clinker, low carbon cement. Mater. Construcc. 65 [317], e045. https://doi.org/10.3989/mc.2015.00614; Díaz, Y.C.; Berriel, S.S.; Heierli, U.; Favier, A.R.; Machado, I.R.S.; Scrivener, K.L.; Hernández, J.F.M.; Habert, G. (2017) Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Dev. Eng. 2, 82-91. https://doi.org/10.1016/j.deveng.2017.06.001; Bishnoi, S.; Maity, S.; Mallik, A.; Joseph, S.; Krishnan, S. (2014) Pilot scale manufacture of limestone calcined clay cement: the Indian experience. Indian Concr J. 77 [7], 22-28. https://www.researchgate.net/publication/316474228.; Yu, J.; Wu, H.L.; Mishra, D.K.; Li, G.; Leung, C.K.; (2020) Compressive strength and environmental impact of sustainable blended cement with high-dosage Limestone and Calcined Clay (LC2).J. Clean. Prod. 278, 123616. https://doi.org/10.1016/j.jclepro.2020.123616; Menéndez, G.; Bonavetti, V.L.; Irassar, E.F. (2006) Ternary blended cement concrete. Part I: early age properties and mechanical strength. Mater. Construcc. 56 [284], 55-67. https://doi.org/10.3989/mc.2006.v56.i284.18; Molina, F.L.; Fernández, Á.; Alonso, M.C. (2018) The influence of curing and aging on chloride transport through ternary blended cement concrete. Mater. Construcc. 68 [332], 4. https://doi.org/10.3989/mc.2018.11917; Menéndez, G.; Bonavetti, V.L.; Irassar, E.F.; (2007) Ternary blend cements concrete. Part II: Transport mechanism. Mater. Construcc. 57 [285], 31-43. https://doi.org/10.3989/mc.2007.v57.i285.37; Menéndez, G.; Bonavetti, V.L.; Irassar, E.F. (2007) Concretes with ternary composite cements. Part III: multicriteria optimization. Mater. Construcc. 57 [286], 19-28. https://doi.org/10.3989/mc.2007.v57.i286.44; Alonso, M.C.; García-Calvo, J.L.; Lothenbach, B. (2016) Influence of the synergy between mineral additions and Portland cement in the physical-mechanical properties of ternary binders. Mater. Construcc. 66 [324], e097. https://doi.org/10.3989/mc.2016.10815; Scrivener, K.; Avet, F.; Maraghechi, H.; Zunino, F.; Ston, J.; Hanpongpun, W.; Favier, A. (2018) Impacting factors and properties of limestone calcined clay cements (LC3).Green Mater.7 [1], 3-14. https://doi.org/10.1680/jgrma.18.00029; Ivanović, M.M.; Kljajević, L.M.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.Ž.; Nenadović, S.S. (2018) Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Construcc. 68 [330], e155. https://doi.org/10.3989/mc.2018.00517; Krishnan, S.; Emmanuel, A.C.; Bishnoi, S. (2019) Hydration and phase assemblage of ternary cements with calcined clay and limestone. Constr. Build. Mater. 222, 64-72. https://doi.org/10.1016/j.conbuildmat.2019.06.123; Ferreiro, S.; Canut, M.M.C.; Lund, J.; Herfort, D. (2019) Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements. Appl. Clay Sci. 169, 81-90. https://doi.org/10.1016/j.clay.2018.12.021; Emmanuel, A.C; Bishnoi, S. (2023) Effect of curing temperature and clinker content on hydration and strength development of calcined clay blends. Adv. Cem. Res. 35 [1], 12-25. https://doi.org/10.1680/jadcr.21.00197; Dhandapani, Y.; Sakthivel, T.; Santhanam, M.; Gettu, R.; Pillai, R.G. (2018) Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3). Cem. Concr. Res. 107, 136-151. https://doi.org/10.1016/j.cemconres.2018.02.005; Shah, V.; Parashar, A.; Mishra, G.; Medepalli, S.; Krishnan, S.; Bishnoi, S. (2020) Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete. Adv. Cem. Res. 32 [3], 101-111. https://doi.org/10.1680/jadcr.18.00073; Ez-Zaki, H.; Marangu, J.M.; Bellotto, M.; Dalconi, M.C.; Artioli, G.; Valentini, L. (2021) A fresh view on limestone calcined clay cement (LC3) pastes. Mat. 14 [11], 3037. https://doi.org/10.3390/ma14113037 PMid:34204883 PMCid:PMC8199791; Avet, F.; Scrivener, K. (2018) Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 107, 124-135. https://doi.org/10.1016/j.cemconres.2018.02.016; Zunino, F.; Scrivener, K. (2021) The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cem. Concr. Res. 140, 106307. https://doi.org/10.1016/j.cemconres.2020.106307; Dhandapani, Y.; Santhanam, M. (2017) Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cem. Con. Com. 84, 36-47. https://doi.org/10.1016/j.cemconcomp.2017.08.012; Indian Standard, I.S. 269 (2015) Specification of requirements of ordinary Portland cement. Bureau of Indian Standards, New Delhi, India. [Google Scholar]; IS 383, 2016. Coarse and fine aggregate for concrete-specification. Bur. Indian Standards, New Delhi, India. [Google Scholar]; ASTM, 2019. ASTM C494/C494M − 19: Standard specification for chemical admixtures for concrete. West Conshohocken, PA, USA.; Indian standards guidelines for design and development of different types of concrete mixes, IS 10262:2019. Bureau of Indian Standards, New Delhi. [Google Scholar]; Bureau of Indian Standards, Is 516 (Part-1 Sec-I) - 2021, Hardened Concrete -Methods of Test, Part 1: Testing of Strength of Hardened Concrete, Section 1: Compressive, Flexural and Split Tensile Strength, New Delhi. [Google Scholar]; Testing, A.S. 2020. Standard test method for field measurement of soil resistivity using the wenner four-electrode method. American Society for Testing and Materials, ASTM G 57-20,(2020) Annual Book of ASTM Standards, 3.; ASTM, C. 2022. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. C1202 − 22.; ASTM International, 2022. ASTM C876-22b Standard test method for corrosion potentials of uncoated reinforcing steel in concrete.; American Society for Testing and Materials (ASTM) (2013) Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, ASTM C1585-13, ASTM International, West Conshohocken, Pennsylvania.; ASTM C642-21, A. 2021. Standard test method for density, absorption, and voids in hardened concrete. ASTM International.; Kumar, R.; Bhattacharjee, B. (2003) Porosity, pore size distribution and in situ strength of concrete. Cem. Concr. Res. 33 [1], 155-164. https://doi.org/10.1016/S0008-8846(02)00942-0; Balshin, M.Y. (1949) Relation of mechanical properties of powder metals and their porosity and the ultimate properties of porous-metal ceramic materials. Dokl. Askd. Nauk SSSR, 67 [5], 831-834. [Google Scholar].; Hasselman DPH. (1969) Griffith flaws and the effect of porosity on tensile strength of brittle ceramics, Jou. Ame. Cer. Soc. 52[8], 457-457. https://doi.org/10.1111/j.1151-2916.1969.tb11982.x; Rossignolo, J.A. (2009) Interfacial interactions in concretes with silica fume and SBR latex. Con. Bui. Mat. 23 [2], 817-821. https://doi.org/10.1016/j.conbuildmat.2008.03.005; Ryshkevitch R. (1953) Compression strength of porous sintered alumina and zirconia. J. Am. Ceram. Soc. 36 [2], 65-68. https://doi.org/10.1111/j.1151-2916.1953.tb12837.x; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3551
No Comments.