Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A model of human neural networks reveals NPTX2 pathology in ALS and FTLD

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Nature Publishing Group
    • الموضوع:
      2024
    • Collection:
      University of Zurich (UZH): ZORA (Zurich Open Repository and Archive
    • نبذة مختصرة :
      Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies$^{1}$, which involve human-specific mechanisms$^{2–5}$ that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors$^{6}$. Single-cell transcriptomics and comparison to independent neural stem cells$^{7}$ showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids$^{8}$. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3′ untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.
    • File Description:
      application/pdf
    • ISSN:
      0028-0836
    • Relation:
      https://www.zora.uzh.ch/id/eprint/257837/1/ZORA_s41586_024_07042_7.pdf; info:pmid/38355792; urn:issn:0028-0836
    • الرقم المعرف:
      10.5167/uzh-257837
    • الرقم المعرف:
      10.1038/s41586-024-07042-7
    • Rights:
      info:eu-repo/semantics/openAccess ; Creative Commons: Attribution 4.0 International (CC BY 4.0) ; http://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.9220E6AB