Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Leveraging co-occurrence networks’ features to improve diatom-based diagnostic tools of river ecological quality

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC); Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS); Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo); Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); Institut universitaire de France (IUF); Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.); Processus et interactions de fine échelle océanique (LOCEAN-PROTEO); Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN); Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)); École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); ANR-21-AAFI-0002,Smart-Biodiv,Technologies d'Intelligence Artificielle pour la recherche en biodiversité(2021)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2024
    • Collection:
      Muséum National d'Histoire Naturelle (MNHM): HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Community composition is shaped by abiotic conditions and is sensitive to environmental changes and anthropogenic pressures on ecosystems. Existing ecological diagnostic tools already make use of integrative community features such as taxonomy- or trait-based diversity metrics. However, information about taxa co-occurrence is more rarely considered. Yet, co-occurrence networks could offer a complete picture of community organization and have been shown to be sensitive to environmental changes. Applying them to freshwater diatoms could hold great promises for the bioassessment of aquatic systems.As part of the Water Framework Directive (WFD) implementation, biotic and abiotic data are routinely collected to monitor the environmental quality of French river systems and are openly available. Datasets resulting from this monitoring programme offer a unique opportunity to investigate whether co-occurrence networks of freshwater benthic diatoms can be used to predict the ecological quality of rivers. Using data from close to 60,000 distinct diatom sampling operations (and associated measurements of environmental parameters) collected from 2007 to 2023 over 10,000 sites, we propose to:I) analyze co-occurrence networks of benthic diatom abundances in rivers across metropolitan France.II) link co-occurrence network features to the intensities of various categories of anthropogenic pressures.III) compare co-occurrence network features to existing diatom-based biotic indices as predictors of river ecological health.In this work, we evaluate whether current statistical frameworks to analyze highly dimensional co-occurrence networks can be successfully applied to diatom assemblages described quantitatively by microscopic counts. We are also using existing databases on benthic diatom traits to move beyond taxonomic networks towards functional interactions, which are potentially more relevant for diagnosing ecosystem processes and therefore potentially more effective in bioassessing the ecological ...
    • الدخول الالكتروني :
      https://hal.univ-lorraine.fr/hal-04715745
    • Rights:
      http://creativecommons.org/licenses/by-nc/
    • الرقم المعرف:
      edsbas.907B3948