Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Machine learning and marsquakes: a tool to predict atmospheric-seismic noise for the NASA InSight mission

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO); Laboratoire de Météorologie Dynamique (UMR 8539) (LMD); Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris; École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); Imperial College London; University of Bristol Bristol; Institut de Physique du Globe de Paris (IPGP (UMR_7154)); Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Institute of Geophysics ETH Zürich; Department of Earth Sciences Swiss Federal Institute of Technology - ETH Zürich (D-ERDW); Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich); Jet Propulsion Laboratory (JPL); NASA-California Institute of Technology (CALTECH); ANR-19-CE31-0008,MAGIS,MArs Geophysical InSight(2019)
    • بيانات النشر:
      HAL CCSD
      Oxford University Press (OUP)
    • الموضوع:
      2023
    • Collection:
      École des Ponts ParisTech: HAL
    • نبذة مختصرة :
      International audience ; The SEIS (seismic experiment for the interior structure of Mars) experiment on the NASA InSight mission has catalogued hundreds of marsquakes so far. However, the detectability of these events is controlled by the weather which generates noise on the seismometer. This affects the catalogue on both diurnal and seasonal scales. We propose to use machine learning methods to fit the wind, pressure and temperature data to the seismic energy recorded in the 0.4–1 and 2.2–2.6 Hz bandwidths to examine low- (LF) and high-frequency (HF) seismic event categories respectively. We implement Gaussian process regression and neural network models for this task. This approach provides the relationship between the atmospheric state and seismic energy. The obtained seismic energy estimate is used to calculate signal-to-noise ratios (SNR) of marsquakes for multiple bandwidths. We can then demonstrate the presence of LF energy above the noise level during several events predominantly categorized as HF, suggesting a continuum in event spectra distribution across the marsquake types. We introduce an algorithm to detect marsquakes based on the subtraction of the predicted noise from the observed data. This algorithm finds 39 previously undetected marsquakes, with another 40 possible candidates. Furthermore, an analysis of the detection algorithm’s variable threshold provides an empirical estimate of marsquake detectivity. This suggests that events producing the largest signal on the seismometer would be seen almost all the time, the median size signal event 45–50 per cent of the time and smallest signal events 5−20 per cent of the time.
    • الرقم المعرف:
      10.1093/gji/ggac464
    • الدخول الالكتروني :
      https://u-paris.hal.science/hal-03983706
      https://u-paris.hal.science/hal-03983706v1/document
      https://u-paris.hal.science/hal-03983706v1/file/ggac464.pdf
      https://doi.org/10.1093/gji/ggac464
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.903FF430