Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Assessment of hematopoietic progenitor cells expansion in an in vitro system using 3D bioprinting

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Muñoz Camargo, Carolina; Cruz Jiménez, Juan Carlos; Perdomo Arciniegas, Ana María; Briceño Triana, Juan Carlos; Jiménez Díaz, Elizabeth; Cord Blood Bank (CBB) Research Group, IDCBIS; Grupo de Investigación en Nanobiomateriales, Ingeniería celular y Bioimpresión (GINIB), Uniandes
    • بيانات النشر:
      Universidad de los Andes
      Maestría en Ingeniería Biomédica
      Facultad de Ingeniería
      Departamento de Ingeniería Biomédica
    • الموضوع:
      2022
    • Collection:
      Universidad de los Andes Colombia: Séneca
    • نبذة مختصرة :
      Thesis document for master in Biomedical Engineering by Laura Liliana Delgado-Murillo ; Currently, there are several routes to treat hematological diseases, such as bone marrow transplantation, chemotherapies, bone marrow aspiration and biopsy, and blood transfusions, among many others. Despite the considerable increase in the number of transplants, they fail to fully address the current demand. Hematopoietic stem/progenitor cell transplantation emerged as an alternative treatment, which offers as main advantage the possibility of obtaining the required cells from sources other than bone marrow aspiration and biopsy, which are highly invasive and painful procedures. Umbilical cord blood is a well-suited source of such cells, and although they are more primitive than their bone marrow counterparts, they also have limited proliferative capacity. Therefore, this project was dedicated to evaluate the proliferation capacity of hematopoietic progenitor cells when cultured in vitro in a 3D environment that mimics their physiological niche. This was accomplished by embedding the cells in a hydrogel (via 3D bioprinting) made from decellularized extracellular matrix derived from porcine intestinal submucosa that was chemically modified via methacrylation. The obtained 3D constructs were matured under exposure to early growth factors (TPO, SCF and Flt3L) as well as to varying oxygen conditions. This was an important parameter since bone marrow is a highly hypoxic microenvironment, where hematopoietic progenitor cells proliferate at a higher rate. A Taqman® Gene Expression Assay (qPCR) was conducted to elucidate changes in the expression of the HIF-1a gene, which has been reported to express in hypoxic environments. Results suggest that embedding cells in a 3D bioprinted construct favors their expansion most likely due to the mimicked hypoxic microenvironment that also resembled the mechanical properties of the native tissue. This notion needs to be further tested in future assays to continue adjusting the culture ...
    • File Description:
      32 páginas; application/pdf
    • Relation:
      Fitzmaurice, C., et al. (2018). Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA oncology, 4(11), 1553-1568.; Garavito, A. Á. (2018). Tensiones entre principios éticos y bioéticos para la atención integral de servicios en trasplantes. Revista Colombiana de Hematología y Oncología, 5(1), 8-9.; Aljurf, M., et al. (2019). Worldwide Network for Blood & Marrow Transplantation (WBMT) special article, challenges facing emerging alternate donor registries. Bone marrow transplantation, 54(8), 1179-1188.; Barriga, F., Ramírez, P., Wietstruck, A., & Rojas, N. (2012). Hematopoietic stem cell transplantation: clinical use and perspectives. Biological research, 45(3), 307-316.; Trejo-Ayala, R. A., Luna-Pérez, M., Gutiérrez-Romero, M., Collazo-Jaloma, J., Cedillo-Pérez, M. C., & Ramos-Peñafiel, C. O. (2015). Bone marrow aspiration and biopsy. Technique and considerations. Revista Médica Del Hospital General De México, 78(4), 196-201.; Bhartiya, D. (2015). Stem cells, progenitors & regenerative medicine: a retrospection. The Indian journal of medical research, 141(2), 154.; Bujko, K., Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2019). Hematopoietic stem and progenitor cells (HSPCs). Stem cells, 49-77.; HemaCare. (2021). Mobilized Peripheral Blood.; Hoggatt, J., et al. (2018). Rapid mobilization reveals a highly engraftable hematopoietic stem cell. Cell, 172(1-2), 191-204.; Gaytán-Morales, F. (2013). Trasplante de células progenitoras hematopoyéticas (TCPH) en Pediatría. GAMO, 12(3), 174-181.; Page NSCIH. (2016). Stem Cell Information.; Sun, J., Allison, J., McLaughlin, C., Sledge, L., Waters¿Pick, B., Wease, S., & Kurtzberg, J. (2010). Differences in quality between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion, 50(9), 1980-1987.; Klein, G. (1995). The extracellular matrix of the hematopoietic microenvironment. Experientia, 51(9), 914-926.; Kramer, A. C., Blake, A. L., Taisto, M. E., Lehrke, M. J., Webber, B. R., & Lund, T. C. (2017). Dermatopontin in bone marrow extracellular matrix regulates adherence but is dispensable for murine hematopoietic cell maintenance. Stem cell reports, 9(3), 770-778.; Muth, C. A., Steinl, C., Klein, G., & Lee-Thedieck, C. (2013). Regulation of hematopoietic stem cell behavior by the nanostructured presentation of extracellular matrix components. PloS one, 8(2), e54778.; Strobel, E. S., Mo¿best, D., von Kleist, S., Dangel, M., Ries, S., Mertelsmann, R., & Henschler, R. (1997). Adhesion and migration are differentially regulated in hematopoietic progenitor cells by cytokines and extracellular matrix. Blood, The Journal of the American Society of Hematology, 90(9), 3524-3532.; Hurst, R. E., & Bonner, R. B. (2001). Mapping of the distribution of significant proteins and proteoglycans in small intestinal submucosa by fluorescence microscopy. Journal of Biomaterials Science, Polymer Edition, 12(11), 1267-1279.; Shi, L., & Ronfard, V. (2013). Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. International Journal of Burns and Trauma, 3(4), 173.; McPherson, T. B., & Badylak, S. F. (1998). Characterization of fibronectin derived from porcine small intestinal submucosa. Tissue Engineering, 4(1), 75-83.; Lindberg, K., & Badylak, S. F. (2001). Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns, 27(3), 254-266.; Hodde, J. P., Badylak, S. F., Brightman, A. O., & Voytik-Harbin, S. L. (1996). Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue engineering, 2(3), 209-217.; Kuter, D. J. (2013). The biology of thrombopoietin and thrombopoietin receptor agonists. International journal of hematology, 98(1), 10-23.; McNiece, I. K., & Briddell, R. A. (1995). Stem cell factor. Journal of leukocyte biology, 58(1), 14-22.; Tsapogas, P., Mooney, C. J., Brown, G., & Rolink, A. (2017). The cytokine Flt3-ligand in normal and malignant hematopoiesis. International Journal of Molecular Sciences, 18(6), 1115.; Morikawa, T., & Takubo, K. (2016). Hypoxia regulates the hematopoietic stem cell niche. Pflügers Archiv-European Journal of Physiology, 468(1), 13-22.; Nguyen, T. L., & Durán, R. V. (2016). Prolyl hydroxylase domain enzymes and their role in cell signaling and cancer metabolism. The International Journal of Biochemistry & Cell Biology, 80, 71-80.; Kim, S. H., Turnbull, J., & Guimond, S. (2011). Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. The Journal of endocrinology, 209(2), 139-151.; FDA. (2021). Approved Cellular and Gene Therapy Products.; Sánchez-Palencia, D. M., González-Mancera, A., Wagner, W. R., & Briceño, J. C. (2014). Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering. Journal of biomechanics, 47(11), 2766-2773.; Rueda-Gensini, L., Serna, J. A., Cifuentes, J., Cruz, J. C., & Muñoz-Camargo, C. (2021). Graphene oxide-embedded extracellular matrix-derived hydrogel as a multiresponsive platform for 3D bioprinting applications. International Journal of Bioprinting, 7(3).; Serna, J. A., Florez, S. L., Talero, V. A., Briceño, J. C., Muñoz-Camargo, C., & Cruz, J. C. (2019). Formulation and characterization of a SIS-based photocrosslinkable bioink. Polymers, 11(3), 569.; Serna, J. A., Rueda-Gensini, L., Céspedes-Valenzuela, D. N., Cifuentes, J., Cruz, J. C., & Muñoz-Camargo, C. (2021). Recent Advances on Stimuli-Responsive Hydrogels Based on Tissue-Derived ECMs and Their Components: Towards Improving Functionality for Tissue Engineering and Controlled Drug Delivery. Polymers, 13(19), 3263.; Biosciences. (2021). Cell Viability Assay based on Metabolic Activity.; Perdomo-Arciniegas, A. M. (2012). Propiedades de adhesión, migración y motilidad de células Stem hematopoyéticas expandidas con citoquinas de acción temprana en co-cultivo con células Stem mesenquimales. Facultad de Medicina UNAL.; Rao, X., Huang, X., Zhou, Z., & Lin, X. (2013). An improvement of the 2 (-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, bioinformatics and biomathematics, 3(3), 71.; Yu, V. W. C., & Scadden, D. T. (2016). Hematopoietic stem cell and its bone marrow niche. Current topics in developmental biology, 118, 21-44.; Yu, V. W., et al. (2015). Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. Journal of Experimental Medicine, 212(5), 759-774.; van Buul, J. D., et al. (2002). Migration of human hematopoietic progenitor cells across bone marrow endothelium is regulated by vascular endothelial cadherin. The Journal of Immunology, 168(2), 588-596.; Winkler, I. G., et al. (2012). Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nature medicine, 18(11), 1651-1657.; Cheema, U., Rong, Z., Kirresh, O., MacRobert, A. J., Vadgama, P., & Brown, R. A. (2012). Oxygen diffusion through collagen scaffolds at defined densities: implications for cell survival in tissue models. Journal of tissue engineering and regenerative medicine, 6(1), 77-84.; Xia, M., et al. (2009). Identification of chemical compounds that induce HIF-1 activity. Toxicological Sciences, 112(1), 153-163.; Vizio, B., et al. (2021). Cooperative role of thrombopoietin and vascular endothelial growth factor-A in the progression of liver cirrhosis to hepatocellular carcinoma. International Journal of Molecular Sciences, 22(4), 1818.; Gibbs, B. F., Yasinska, I. M., Oniku, A. E., & Sumbayev, V. V. (2011). Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells. PloS one, 6(7), e22502.; Sourani, Z., Pourgheysari, B., Beshkar, P., Shirzad, H., & Shirzad, M. (2016). Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iranian journal of medical sciences, 41(6), 525.; Wagner, B. A., Venkataraman, S., & Buettner, G. R. (2011). The rate of oxygen utilization by cells. Free Radical Biology and Medicine, 51(3), 700-712.; Peng, C. A., & Palsson, B. O. (1996). Determination of specific oxygen uptake rates in human hematopoietic cultures and implications for bioreactor design. Annals of biomedical engineering, 24(3), 373-381.; http://hdl.handle.net/1992/59037; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
    • الدخول الالكتروني :
      http://hdl.handle.net/1992/59037
    • Rights:
      Attribution-NonCommercial-NoDerivatives 4.0 Internacional ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/openAccess ; http://purl.org/coar/access_right/c_abf2
    • الرقم المعرف:
      edsbas.8F95D52C