Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Future intensification of summer hypoxia in the tidal Garonne River (SW France) simulated by a coupled hydro sedimentary-biogeochemical model

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Environnements et Paléoenvironnements OCéaniques (EPOC); Observatoire aquitain des sciences de l'univers (OASU); Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS); Centre recherche et développement (LyRE); Lyonnaise des Eaux; Biologie des Organismes et Ecosystèmes Aquatiques (BOREA); Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2018
    • Collection:
      Université des Antilles (UAG): HAL
    • نبذة مختصرة :
      International audience ; Projections for the next 50 years predict a widespread distribution of hypoxic zones in the open and coastal ocean due to environmental and global changes. The Tidal Garonne River (SW France) has already experienced few episodic hypoxic events. However, predicted future climate and demographic changes suggest that summer hypoxia could become more severe and even permanent near the city of Bordeaux in the next few decades. A 3D model, which couples hydrodynamic, sediment transport, and biogeochemical processes, is applied to assess the impact of factors submitted to global and regional climate changes on oxygenation in the turbidity maximum zone (TMZ) of the Tidal Garonne River during low-discharge periods. The model simulates an intensification of summer hypoxia with an increase in temperature, a decrease in river flow or an increase in the local population, but not with sea level rise, which has a negligible impact on dissolved oxygen. Different scenarios were tested by combining these different factors according to the regional projections for 2050 and 2100. All the simulations showed a trend toward a spatial and temporal extension of summer hypoxia that needs to be considered by local water authorities to impose management strategies to protect the ecosystem
    • Relation:
      hal-02104899; https://hal.science/hal-02104899; https://hal.science/hal-02104899/document; https://hal.science/hal-02104899/file/ESPR-LajaunieSalla%20%281%29.pdf
    • الرقم المعرف:
      10.1007/s11356-018-3035-6
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.8EE1B245