نبذة مختصرة : 11 pages ; International audience ; Let $\al$ be an irrational and $\varphi: \N \rightarrow \R^+$ be a function decreasing to zero. For any $\al$ with a given Diophantine type, we show some sharp estimations for the Hausdorff dimension of the set \[ E_{\varphi}(\al):=\{y\in \R: \|n\al -y\| < \varphi(n) \text{ for infinitely many } n\}, \] where $\|\cdot\|$ denotes the distance to the nearest integer.
No Comments.