نبذة مختصرة : We consider a structured multi-label prediction problem where the labels are orga nized under implication and mutual exclusion constraints. A major concern is to produce predictions that are logically consistent with these constraints. To do so, we formulate this problem as an embedding inference problem where the constraints are imposed onto the embeddings of labels by geometric construction. Particu larly, we consider a hyperbolic Poincaré ball model in which we encode labels as Poincaré hyperplanes that work as linear decision boundaries. The hyperplanes are interpreted as convex regions such that the logical relationships (implication and exclusion) are geometrically encoded using insideness and disjointedness of these regions, respectively. We show theoretical groundings of the method for preserving logical relationships in the embedding space. Extensive experiments on 12 datasets show 1) significant improvements in mean average precision; 2) lower number of constraint violations; 3) an order of magnitude fewer dimensions than baselines.
Relation: https://eprints.soton.ac.uk/471373/1/hyperbolic_embedding_inference.pdf; Xiong, Bo, Cochez, Michael, Nayyeri, Mojtaba and Staab, Steffen (2022) Hyperbolic embedding inference for structured multi-label prediction. Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, , New Orleans, United States. 28 Nov - 09 Dec 2022.
No Comments.