Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Constraining surface emissions of air pollutants using inverse modelling: method intercomparison and a new two-step two-scale regularization approach

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Center for Global and Regional Environmental Research (CGRER); University of Iowa Iowa City; Coupling environmental data and simulation models for software integration (Clime); Inria Paris-Rocquencourt; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA); École des Ponts ParisTech (ENPC)-EDF R&D (EDF R&D); EDF (EDF)-EDF (EDF); Departamento de Ingeniería Matemática Santiago (DIM); Universidad de Chile = University of Chile Santiago (UCHILE)-Centre National de la Recherche Scientifique (CNRS); Centre de modélisation mathématique / Centro de Modelamiento Matemático Santiago (CMM); Departamento de Geofísica Santiago; Universidad de Chile = University of Chile Santiago (UCHILE)
    • بيانات النشر:
      HAL CCSD
      Taylor & Francis
    • الموضوع:
      2011
    • Collection:
      École des Ponts ParisTech: HAL
    • نبذة مختصرة :
      International audience ; When constraining surface emissions of air pollutants using inverse modelling one often encounters spurious corrections to the inventory at places where emissions and observations are colocated, referred to here as the colocalization problem. Several approaches have been used to deal with this problem: coarsening the spatial resolution of emissions; adding spatial correlations to the covariance matrices; adding constraints on the spatial derivatives into the functional being minimized; and multiplying the emission error covariance matrix by weighting factors. Intercomparison of methods for a carbon monoxide inversion over a city shows that even though all methods diminish the colocalization problem and produce similar general patterns, detailed information can greatly change according to the method used ranging from smooth, isotropic and short range modifications to not so smooth, non-isotropic and long range modifications. Poisson (non-Gaussian) and Gaussian assumptions both show these patterns, but for the Poisson case the emissions are naturally restricted to be positive and changes are given by means of multiplicative correction factors, producing results closer to the true nature of emission errors. Finally, we propose and test a new two-step, two-scale, fully Bayesian approach that deals with the colocalization problem and can be implemented for any prior density distribution.
    • Relation:
      inria-00632515; https://inria.hal.science/inria-00632515; https://inria.hal.science/inria-00632515/document; https://inria.hal.science/inria-00632515/file/16218-47137-1-SM.pdf
    • الرقم المعرف:
      10.1111/j.1600-0889.2011.00529.x
    • الدخول الالكتروني :
      https://inria.hal.science/inria-00632515
      https://inria.hal.science/inria-00632515/document
      https://inria.hal.science/inria-00632515/file/16218-47137-1-SM.pdf
      https://doi.org/10.1111/j.1600-0889.2011.00529.x
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.8D97D529