Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Non-local contribution from small scales in galaxy-galaxy lensing: Comparison of mitigation schemes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Physique Subatomique et de Cosmologie (LPSC); Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA); Institut d'Astrophysique de Paris (IAP); Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); DES
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)
    • نبذة مختصرة :
      International audience ; Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3$\times$2pt, had to discard a lot of signal-to-noise from small scales due to our inability to precisely model non-linearities and baryonic effects. Galaxy-galaxy lensing, or the position-shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale $\theta$ or physical scale $R$ carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently there have been a few independent efforts that aim to mitigate the non-locality of the galaxy-galaxy lensing signal. Here we perform a comparison of the different methods, including the Y transformation described in Park et al. (2021), the point-mass marginalization methodology presented in MacCrann et al. (2020) and the Annular Differential Surface Density statistic described in Baldauf et al. (2010). We do the comparison at the cosmological constraints level in a noiseless simulated combined galaxy clustering and galaxy-galaxy lensing analysis. We find that all the estimators perform equivalently using a Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like setup. This is because all the estimators project out the mode responsible for the non-local nature of the galaxy-galaxy lensing measurements, which we have identified as $1/R^2$. We finally apply all the estimators to DES Y3 data and confirm that they all give consistent results.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2212.03734; ARXIV: 2212.03734; INSPIRE: 2611650
    • الرقم المعرف:
      10.1093/mnras/stad847
    • الدخول الالكتروني :
      https://hal.science/hal-03909218
      https://hal.science/hal-03909218v1/document
      https://hal.science/hal-03909218v1/file/stad847.pdf
      https://doi.org/10.1093/mnras/stad847
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.8D020E4F