Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 3) ; Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 3): Summer School 2014 - Asymptotic analysis in general relativity ; : École d’été 2014 - Analyse asymptotique en relativité générale

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Jacques-Louis Lions (LJLL); Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS); Institut Fourier (IF ); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2014
    • نبذة مختصرة :
      In order to control locally a space-­time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-­posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations.This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background.
    • Relation:
      medihal-01318844; https://hal.science/medihal-01318844; https://hal.science/medihal-01318844/document; https://hal.science/medihal-01318844/file/szeftel3.mp4
    • الدخول الالكتروني :
      https://hal.science/medihal-01318844
      https://hal.science/medihal-01318844/document
      https://hal.science/medihal-01318844/file/szeftel3.mp4
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.8B9925E9