Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Proteasome-mediated turnover of arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2012
    • Collection:
      Repositorio Digital Institucional - Universidad de Buenos Aires (RDI UBA)
    • نبذة مختصرة :
      The Mediator complex is a greater than 1-megadalton complex, composed of about 30 subunits and found in most eukaryotes, whose main role is to transmit signals from DNA-bound transcription factors to RNA Polymerase II. The proteasome is emerging as an important regulator of transcription during both initiation and elongation. It is increasing the number of cases where the proteolysis of transcriptional activators by the proteasome activates their function. This counterintuitive phenomenon was called "activation by destruction." Here, we show that, in Arabidopsis (Arabidopsis thaliana), PHYTOCHROME AND FLOWERING TIME1 (PFT1), the MEDIATOR25 (MED25) subunit of the plant Mediator complex, is degraded by the proteasome and that proteasome-mediated PFT1 turnover is coupled to its role in stimulating the transcription of FLOWERING LOCUS T, the plant florigen, which is involved in the process of flowering induction. We further identify two novel RING-H2 proteins that target PFT1 for degradation. We show that MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2 bind to PFT1 in yeast (Saccharomyces cerevisiae) and in vitro, and they promote PFT1 degradation in vivo, in a RING-H2- dependent way, typical of E3 ubiquitin ligases. We further show that both MBR1 and MBR2 also promote flowering by PFT1- dependent and -independent mechanisms. Our findings extend the phenomenon of activation by destruction to a Mediator subunit, adding a new mechanism by which Mediator subunits may regulate downstream genes in specific pathways. Furthermore, we show that two novel RING-H2 proteins are involved in the destruction of PFT1, adding new players to this process in plants. © 2012 American Society of Plant Biologists. ; Fil:Cerdán, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
    • File Description:
      application/pdf
    • Relation:
      http://hdl.handle.net/20.500.12110/paper_00320889_v160_n3_p1662_Inigo; http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00320889_v160_n3_p1662_Inigo_oai
    • الدخول الالكتروني :
      https://hdl.handle.net/20.500.12110/paper_00320889_v160_n3_p1662_Inigo
      http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00320889_v160_n3_p1662_Inigo_oai
    • Rights:
      info:eu-repo/semantics/openAccess ; http://creativecommons.org/licenses/by/2.5/ar
    • الرقم المعرف:
      edsbas.8B7EB49