Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Image-based wavefront correction using model-free Reinforcement Learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      DTIS, ONERA, Université Paris Saclay Palaiseau; ONERA-Université Paris-Saclay; DOTA, ONERA, Université Paris Saclay Palaiseau; Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA); Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Observatoire de Paris; Université Paris Sciences et Lettres (PSL); DOTA, ONERA, Université Paris Saclay Châtillon; Agence Nationale de la Recherche; Data Intelligence Institute of Paris; Office National d'études et de Recherches Aérospatiales; ANR-22-EXOR-0016,AI data analysis,Analyse de données par intelligence artificielle(2022)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      ONERA: HAL (Centre français de recherche aérospatiale / French Aerospace Lab)
    • نبذة مختصرة :
      International audience ; Optical aberrations prevent telescopes from reaching their theoretical diffraction limit. Once estimated, these aberrations can be compensated for using deformable mirrors in a closed loop. Focal plane wavefront sensing enables the estimation of the aberrations on the complete optical path, directly from the images taken by the scientific sensor. However, current focal plane wavefront sensing methods rely on physical models whose inaccuracies may limit the overall performance of the correction. The aim of this study is to develop a data-driven method using model-free reinforcement learning to automatically perform the estimation and correction of the aberrations, using only phase diversity images acquired around the focal plane as inputs. We formulate the correction problem within the framework of reinforcement learning and train an agent on simulated data. We show that the method is able to reliably learn an efficient control strategy for various realistic conditions. Our method also demonstrates robustness to a wide range of noise levels.
    • Relation:
      hal-04624895; https://hal.science/hal-04624895; https://hal.science/hal-04624895/document; https://hal.science/hal-04624895/file/gutierrez-rlwfc.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-04624895
      https://hal.science/hal-04624895/document
      https://hal.science/hal-04624895/file/gutierrez-rlwfc.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.8B640255