Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Transgenic plants as a model for studying еpigenetic regulation of gene expression ; Трансгенные растения как модели для изучения эпигенетической регуляции экспрессии генов

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Institute of Cytology and Genetics of Siberian Branch of the RAS
    • الموضوع:
      2015
    • Collection:
      Vavilov Journal of Genetics and Breeding / Вавиловский журнал генетики и селекции
    • نبذة مختصرة :
      The phenomenon of loss of expression of transferred genes in transgenic plants was discovered in the early 1990s. The study of this phenomenon revealed dependence of the frequency of gene silencing on the number of integrated copies in the plant genome, the properties of the transgene sequence itself (the presence of duplications, vector sequences, and others), chromosomal position. Loss of gene expression can occur transcriptionally or post-transcriptionally in most cases involving small interfering RNA (siRNA). In plants, the most common mechanism for inactivation of genes at the level of RNA transcription is RNA-directed DNA methylation (RdDM). An important role is played by the plant-specific RNA polymerase IV and V. Pol IV is assumed to transcribe non-coding transcripts at its target loci. They are copied into long dsRNAs and are processed by DICER into siRNAs. siRNAs are then methylated and loaded into the effector complex, whose main component is a protein of the Argonaute family. RNA polymerase V also transcribes the noncoding transcript of the target gene, but it serves as a scaf¬fold that interacts with siRNAs and that recruits proteins and enzymes responsible for DNA and histone methylation. Posttranscriptional gene inactivation occurs in the cytoplasm and is associated with a specific effector complex (AGO-siRNA), which cleavages homologous mRNA. In plants, in addition to the canonical pathway, RdDM, more mechanisms exist, which include components for posttranscriptional gene inactivation, specific proteins and other types of small RNAs. In this review, we briefly discuss the currently known components of epigenetic regulation. ; Феномен потери экспрессии перенесенных генов в трансгенных растениях был обнаружен в начале 1990-х годов. Изучение данного явления показало зависимость частоты инактивации трансгенов от числа интегрированных копий в растительный геном, особенностей организации встройки (наличие дупликаций, векторных последовательностей и др.), места встраивания. Потеря экспрессии гена может ...
    • File Description:
      application/pdf
    • Relation:
      https://vavilov.elpub.ru/jour/article/view/447/524; Ванюшин Б.Ф. Метилирование ДНК у растений: эпигенетический контроль за генетическими функциями. Эпигенетика. Ред. С.М. Закиян, В.В. Власов, Е.В. Дементьева. Новосибирск: Изд-во СО РАН, 2012.; Дорохов Ю.Л. «Умолкание» генов у растений. Молекуляр. биология. 2007;41(4):579-592.; Логинова Д.Б., Меньшанов П.Н., Дейнеко Е.В. Анализ мозаичного проявления nptII-гена у контрастных по мозаицизму трансгенных растений табака. Генетика. 2012;48:1280-1286.; Маренкова (Новоселя) Т.В., Дейнеко Е.В., Шумный В.К. Мозаичный характер проявления гена nptII у трансгенных растений табака Nu 21. Генетика. 2007;43(7):943-954.; Маренкова Т.В., Дейнеко Е.В. Инактивирование генов у растений на уровне транскрипции. Генетика. 2010;46(5):581-592.; Agius F., Kapoor A., Zhu J.K. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl Acad. Sci. USA. 2006;103:11796-11801.; Bastar M.T., Luthar Z., Skof S., Bohanec B. Quantitative determination of mosaic GFP gene expression in tobacco. Plant Cell Rep. 2004;22:939-944.; Böhmdorfer G., Rowley M.J., Kuciński J., Zhu Y., Amies I., Wierzbicki A.T. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA. Plant J. 2014;79(2):181-191. DOI:10.1111/tpj.12563; Charrier B., Scollan C., Ross S., Zubko E., Meyer P. Co-silencing of homologous transgenes in tobacco. Mol. Breeding. 2000;6:407-419.; Day C.D., Lee E., Kobayashi J., Holappa L.D., Albert H., Ow D.W. Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Gene. Dev. 2000;14:2869-2880.; De Paoli E., Dorantes-Acosta A., Zhai J., Accerbi M., Jeong D.H., Park S., Meyers B.C., Jorgensen R.A., Green P.J. Distinct extremely abundant siRNAs associated with cosuppression in petunia. RNA. 2009;15:1965-1970. DOI:10.1261/rna.1706109; Dinh T.T., Gao L., Liu X., Li D., Li S., Zhao Y., O’Leary M., Le B., Schmitz R.J., Manavella P., Li S., Weigel D., Pontes O., Ecker J.R., Chen X. DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis. PLOS Genet. 2014;10: e1004446. DOI:10.1371/journal.pgen.1004446; Dolgosheina E.V., Morin R.D., Aksay G., Sahinalp S.C., Magrini V., Mardis E.R., Mattsson J., Unrau P.J. Conifers have a unique small RNA silencing signature. RNA. 2008;14:1508-1515. DOI:10.1261/rna.1052008; Gao Z., Liu H.L., Daxinger L., Pontes O., He X., Qian W., Lin H., Xie M., Lorkovic Z.J., Zhang S., Miki D., Zhan X., Pontier D., Lagrange T., Jin H., Matzke A.J., Matzke M., Pikaard C.S., Zhu J.K. An RNA polymerase II- and AGO4-associated protein acts in RNAdirected DNA methylation. Nature. 2010;465(7294):106-109. DOI:10.1038/nature09025; Groth M., Stroud H., Feng S., Greenberg M.V., Vashisht A.A., Wohlschlegel J.A., Jacobsen S.E., Ausin I. SNF2 chromatin remodeler-family proteins FRG1 and -2 are required for RNA-directed DNA methylation. Proc. Natl Acad. Sci. USA. 2014;111:17666-17671. DOI:10.1073/pnas.1420515111; Habu Y. Epigenetic silencing of endogenous repetitive sequences by MORPHEUS’ MOLECULE1 in Arabidopsis thaliana. Epigenetics. 2010;5:562-565.; Heilersig H.J., Loonen A., Bergervoet M., Wolters A.M., Visser R.G. Post-transcriptional gene silencing of GBSSI in potato: effects of size and sequence of the inverted repeats. Plant Mol. Biol. 2006;60:647-662. DOI:10.4161/epi.5.7.12518; Herr A.J., Jensen M.B., Dalmay T., Baulcombe D.C. RNA polymerase IV directs silencing of endogenous DNA. Science. 2005;308(5718):118-120.; Huang C., Zhu J. RNA splicing factors and RNA-directed DNA methylation. Biology (Basel). 2014;3:243-254. DOI:10.3390/biology3020243; Huang Y., Kendall T., Mosher R.A. Pol IV-dependent siRNAproduction is reduced in Brassica rapa. Biology (Basel). 2013;2:1210-1223. DOI:10.3390/biology2041210; Jakowitsch J., Papp I., Moscone E.A., van der Winden J., Matzke M.A., Matzke A.J.M. Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J. 1999;17:131-140.; Johnson L.M., Du J., Hale C.J., Bischof S., Feng S., Chodavarapu R.K., Zhong X., Marson G., Pellegrini M., Segal D.J., Patel D.J., Jacobsen S.E. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 2014;507:124-128. DOI:10.1038/nature12931; Khaitová L.C., Fojtová M., Křížová K., Lunerová J., Fulneček J., Depicker A., Kovařík A. Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing. Epigenetics. 2011;6:650-660.; Law J.A., Du J., Hale C.J., Feng S., Krajewski K., Palanca A.M., Strahl B.D., Patel D.J., Jacobsen S.E. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature. 2013;498:385-389. DOI:10.1038/nature12178; Liu Z.W., Shao C.R., Zhang C.J., Zhou J.X., Zhang S.W., Li L., Chen S., Huang H.W., Cai T., He X.J. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. Proc. Natl Acad. Sci. USA. 2014;111: 7474-7479. DOI:10.1371/journal.pgen.1003948; Luo C., Durgin B.G., Watanabe N., Lam E. Defining the functional network of epigenetic regulators in Arabidopsis thaliana. Mol. Plant. 2009;2:661-674. DOI:10.1093/mp/ssp017; Lunerová-Bedrichová J., Bleys A., Fojtová M., Khaitová L., Depicker A., Kovařík A. Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J. 2008;54(6):1049-1062. DOI:10.1111/j.1365-313X. 2008.03475.x; Ma C., Mitra A. Intrinsic direct repeats generate consistent post-transcriptional gene silencing in tobacco. Plant J. 2002;31:37-49.; Mari-Ordonez A., Marchais A., Etcheverry M., Martin A., Colot V., Voinnet O. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 2013;45:1029-1039. DOI:10.1038/ng.2703; Matzke A.J.M., Neuhuber F., Park Y.-D., Ambros P.F., Matzke M.A. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 1994;244:219-229.; Matzke M.A., Mosher R.A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014;15:394-408. DOI:10.1038/nrg3683; Mette M.F., Aufsatz W., van der Winden J., Matzke M.A., Matzke A.J.M. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000;19:5194-5201.; Meyer P. Transgenes and their contributions to epigenetic research. Int. J. Dev. Biol. 2013;57:509-515. DOI:10.1387/ijdb.120254pm; Mosher R.A., Schwach F., Studholme D., Baulcombe D.C. Pol IVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc. Natl Acad. Sci. USA. 2008;105: 3150. DOI:10.1073/pnas.0709632105; Mourrain P., van Blokland R., Kooter J.M., Vaucheret H. A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta. 2007;225:365-379.; Napoli C., Lemieux C., Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279-289.; Nuthikattu S., McCue A.D., Panda K., Fultz D., De Fraia C., Thomas E.N., Slotkin R.K. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol. 2013;162:116-1131. DOI:10.1104/pp.113.216481; Park Y.-D., Papp I., Moscone E.A., Iglesias V.A., Vaucheret H., Matzke A.J.M. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 1996;9:183-194.; Penterman J., Uzawa R., Fischer R.L. Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol. 2007;145:1549-1557.; Pontier D., Picart C., Roudier F., Garcia D., Lahmy S., Azevedo J., Alart E., Laudié M., Karlowski W.M., Cooke R., Colot V., Voinnet O., Lagrange T. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol. Cell. 2012;48:121-132. DOI:10.1016/j.molcel.2012.07.027; Pooggin M. How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int. J. Mol. Sci. 2013;14:15233-15259. DOI:10.3390/ijms140815233; Sallaud C., Meynard D., van Boxtel J., Gay C., Bès M., Brizard J.P., Larmande P., Ortega D., Raynal M., Portefaix M., Ouwerkerk P.B., Rueb S., Delseny M., Guiderdoni E. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor. Appl. Genet. 2003;106:1396-1408.; Smith L.M., Pontes O., Searle I., Yelina N., Yousafzai F.K., Herr A.J., Pikaard C.S., Baulcombe D.C. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell. 2007;19:1507-1521.; Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006;20:759-771.; Vaucheret H. Promoter-dependent trans-inactivation in transgenic tobacco plants: kinetic aspects of gene silencing and gene reactivation. C.R. Acad. Sci. Paris. 1994;316:310-323.; Velásquez A.C., Chakravarthy S., Martin G.B. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. Vis Exp. 2009;28:pii: 1292. DOI:10.3791/1292; Wan L.C., Wang F., Guo X., Lu S., Qiu Z., Zhao Y., Zhang H., Lin J. Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biology. 2012;12:146. DOI:10.1186/1471-2229-12-146; Wassenegger M., Heimes S., Riedel L., Sanger H. RNA-directed de novo methylation of genomic sequences in plants. Cell. 1994;76: 567-576.; Wierzbicki A.T., Cocklin R., Mayampurath A., Lister R., Rowley M.J., Gregory B.D., Ecker J.R., Tang H., Pikaard C.S. Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev. 2012;26:1825-1836. DOI:10.1101/gad.197772.112; Wu L., Zhou H., Zhang Q., Zhang J., Ni F., Liu C., Qi Y. DNA methylation mediated by a microRNA pathway. Mol. Cell. 2010;38:465-475. DOI:10.1016/j.molcel.2010.03.008; Yang Z., Ebright W.U., Yu B., Chen X. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucl. Acids Res. 2006;34:667-675.; You W., Lorkovic Z.J., Matzke A.J., Matzke M. Interplay among RNA polymerases II, IV and V in RNA-directed DNA methylation at a low copy transgene locus in Arabidopsis thaliana. Plant Mol. Biol. 2013;82:85-96. DOI:10.1007/s11103-013-0041-4; Zhang H., Tang K., Qian W., Duan C.G., Wang B., Zhang H., Wang P., Zhu X., Lang Z., Yang Y., Zhu J.K. An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis. Mol. Cell. 2014;54:418-430. DOI:10.1016/j.molcel.2014.03.019; Zhong X., Hale C.J., Law J.A., Johnson L.M., Feng S., Tu A., Jacobsen S.E. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat. Struct. Mol. Biol. 2012;19:870-875. DOI:10.1038/nsmb.2354; Zhu Y., Rowley M.J., Bohmdorfer G., Wierzbicki A.T.A. SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol. Cell. 2013;49:298-309. DOI:10.1016/j.molcel.2012.11.011; https://vavilov.elpub.ru/jour/article/view/447
    • الدخول الالكتروني :
      https://vavilov.elpub.ru/jour/article/view/447
    • Rights:
      Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
    • الرقم المعرف:
      edsbas.8B3A2861