Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Three-Dimensional Direct Numerical Simulations of a Yawed Square Cylinder in Steady Flow

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      MDPI AG
    • الموضوع:
      2022
    • Collection:
      Directory of Open Access Journals: DOAJ Articles
    • نبذة مختصرة :
      The effects of yaw angle on wake characteristics of a stationary square cylinder were investigated in terms of the hydrodynamic forces, the vortex shedding frequency, and the vortical structures using direct numerical simulations (DNS) at a Reynolds number of 1000. In total, four yaw angles, namely, α = 0°, 15°, 30°, and 45°, were considered. The three-dimensional (3D) Navier–Stokes equations were solved directly using the finite volume method in OpenFOAM. It was found that the first-order statistics of the drag coefficient and the Strouhal number satisfied the independence principle (IP) closely. However, the second-order statistics of the drag and lift coefficients deviated apparently from the IP for α ≥ 25°. The iso-surfaces of the spanwise vorticity gradually disorganized and the magnitudes of the spanwise vorticity contour decreased as the yaw angle α was increased from 0° to 45°. By contrast, the streamwise vorticity iso-surfaces were found to become more organized and the magnitudes of the spanwise velocity contour became larger as a result of the increase in yaw angle, indicating the impairment of the quasi-two-dimensionality and the enhancement of the three-dimensionality of the wake flow. Extensive comparisons were also made with previous DNS results for a yawed circular cylinder, and both similarities and differences between these two kinds of cylinder wakes are discussed.
    • ISSN:
      2077-1312
    • Relation:
      https://www.mdpi.com/2077-1312/10/8/1128; https://doaj.org/toc/2077-1312; https://doaj.org/article/0975a76dfa7d4e46bb8fcdd72fe4f1bf
    • الرقم المعرف:
      10.3390/jmse10081128
    • الدخول الالكتروني :
      https://doi.org/10.3390/jmse10081128
      https://doaj.org/article/0975a76dfa7d4e46bb8fcdd72fe4f1bf
    • الرقم المعرف:
      edsbas.8A6028D0