Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Formalization of Complete Discrete Valuation Rings and Local Fields

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Universidad Autónoma de Madrid (UAM); Combinatoire, théorie des nombres (CTN); Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); CA1/RSUE/2021-00623 of the Spanish Ministry ofUniversities, the Recovery, Transformation and Resilience Plan, and Universidad Autónoma de Madrid.; Appel à Projets Recherche UJM 2023 of Université Jean Monnet Saint-Étienne; ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Université Jean Monnet – Saint-Etienne: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Local fields, and fields complete with respect to a discrete valuation, are essential objects in commutative algebra, with applications to number theory and algebraic geometry. We formalize in Lean the basic theory of discretely valued fields. In particular, we prove that the unit ball with respect to a discrete valuation on a field is a discrete valuation ring and, conversely, that the adic valuation on the field of fractions of a discrete valuation ring is discrete. We define finite extensions of valuations and of discrete valuation rings, and prove some global-to-local results. Building on this general theory, we formalize the abstract definition and some fundamental properties of local fields. As an application, we show that finite extensions of the field $\mathbb{Q}_p$ of $p$-adic numbers and of the field $\mathbb{F}_p(\!(X)\!)$ of Laurent series over $\mathbb{F}_p$ are local fields.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2310.01998; ujm-04222610; https://ujm.hal.science/ujm-04222610; https://ujm.hal.science/ujm-04222610v3/document; https://ujm.hal.science/ujm-04222610v3/file/deFrutosFerandez%26Nuccio-A%20Formalization%20of%20Complete%20DVR%20and%20Local%20Fields.pdf; ARXIV: 2310.01998
    • الرقم المعرف:
      10.1145/3636501.3636942
    • الدخول الالكتروني :
      https://ujm.hal.science/ujm-04222610
      https://ujm.hal.science/ujm-04222610v3/document
      https://ujm.hal.science/ujm-04222610v3/file/deFrutosFerandez%26Nuccio-A%20Formalization%20of%20Complete%20DVR%20and%20Local%20Fields.pdf
      https://doi.org/10.1145/3636501.3636942
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.89C15E3A