Contributors: Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX); Inria Nancy - Grand Est; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Institut Élie Cartan de Lorraine (IECL); Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); LR Analysis and Control of Pde, LR 22ES03, Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, 5019 Monastir, Tunisia; Université de Monastir - University of Monastir (UM); Institut Fourier (IF); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA); Université Grenoble Alpes (UGA)
نبذة مختصرة : We study composite assemblages of dielectrics and metamaterials with respectively positive and negative material parameters. In the continuum case, for a scalar equation, such media may exhibit so-called plasmonic resonances for certain values of the (negative) conductivity in the metamaterial. This work investigates such resonances, and the associated eigenfunctions, in the case of composite conducting networks. Unlike the continuous media, we show a surprising specific dependence on the geometry of the network of the resonant values. We also study how the problem is affected by the choice of boundary conditions on the external nodes of the structure.
No Comments.