Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Digital Curvature Evolution Model for Image Segmentation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Mathématiques (LAMA); Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS); Laboratoire d'Informatique Gaspard-Monge (LIGM); École nationale des ponts et chaussées (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel; Centre de vision numérique (CVN); Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec; OPtimisation Imagerie et Santé (OPIS); Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN); Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-CentraleSupélec; ANR-11-BSV4-0001,PARIS,Plasticité, assemblage et régulation du segment Initial de l'axone(2011); ANR-15-CE40-0006,CoMeDiC,Métriques convergentes pour le calcul digital(2015)
    • بيانات النشر:
      CCSD
      Springer
    • الموضوع:
      2019
    • Collection:
      Université Savoie Mont Blanc: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Recent works have indicated the potential of using curvature as a regularizer in image segmentation, in particular for the class of thin and elongated objects. These are ubiquitous in biomedical imaging (e.g. vascular networks), in which length regularization can sometime perform badly, as well as in texture identification. However, curvature is a second-order differential measure, and so its estimators are sensitive to noise. The straightforward extensions to Total Variation are not convex, making them a challenge to optimize. State-of-art techniques make use of a coarse approximation of curvature that limits practical applications.We argue that curvature must instead be computed using a multigrid convergent estimator, and we propose in this paper a new digital curvature flow which mimics continuous curvature flow. We illustrate its potential as a post-processing step to a variational segmentation framework.
    • الرقم المعرف:
      10.1007/978-3-030-14085-4_2
    • الدخول الالكتروني :
      https://hal.science/hal-02426946
      https://hal.science/hal-02426946v1/document
      https://hal.science/hal-02426946v1/file/digital-curvature-boundary-correction.pdf
      https://doi.org/10.1007/978-3-030-14085-4_2
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.89725EE3